8.
$$f(x) = x^{3} + 3x^{2} - 9x + 5$$

$$f'(x) = 3x^{2} + 6x - 9$$

$$3x^{2} + 6x - 9 = 0$$

$$5x^{2} + 2x - 3 = 0$$

$$(5x + 3)(x - 1) = 0$$

$$x = -3$$
 $x = 1$
 $y = 32$ $y = 0$
 $(-3,32)$ $(1,0)$

-4 -3 - 7	
f(x) + 0	f(x) - 0 +
$f(x) + 0 -$ Shape $1 \rightarrow y$	shape \
Max@ (-3,32)	Min @ (1,0)

Qı	uestio	n	Generic scheme	Illustrative scheme	
8.			•¹ start to differentiate	• $3x^2$ or + 6x or 9	6
			•² complete differentiation and equate to 0		
			\bullet ³ solve for x	•³ •³ -3 and 1	
			• ⁴ process for <i>y</i>	• ⁴ 32 and 0	
			•5 construct nature table(s)	•5 •6	
				x3 1	
				$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
			• 6 interpret and state conclusions	•6 max at $(-3,32)$; min at $(1,0)$	

Notes:

- 1. For a numerical approach award 0/6.
- 2. \bullet^2 is only available if '= 0' appears at the \bullet^2 stage or in working leading to \bullet^3 , however see Candidates A and B.
- 3. Candidates who equate their derivative to 0, may use division by 3 as a strategy see candidates B, C and D.
- 4. •³ is available to candidates who factorise **their** derivative from •² as long as it is of equivalent difficulty.
- 5. \bullet^3 and \bullet^4 may be awarded vertically.
- 6. 5 is not available where any errors are made in calculating values of f'(x).
- 7. \bullet^5 and \bullet^6 may be awarded vertically.
- 8. 6 is still available in cases where a candidates table of signs does not lead legitimately to a maximum/minimum shape.
- 9. Candidates may use the second derivative see Candidates E and F.
- 10. Accept "max when x = -3" and "min when x = 1" for \bullet 6.

Commonly Observed Responses:

Commonly Cases for the periods					
Candidate A		Candidate B			
Stationary points when f	$\mathbf{C}'(x) = 0$	Stationary points when	Stationary points when $f'(x) = 0$		
$f'(x) = 3x^2 + 6x - 9$	•¹ ✓ •² ✓	$f'(x) = 3x^2 + 6x - 9$	•¹ ✓ •² ✓		
f'(x) = 3(x+3)(x-1)		:			
x = -3, 1	•³ ✓	f'(x) = (x+3)(x-1) $x = -3, 1$	•³ ✓		
Candidate C - division by	, 3	Candidate D - derivativ	•		
_		_	-		
$3x^2 + 6x - 9 = 0$	•¹ ✓ •² ✓	$3x^2 + 6x - 9$	•¹ ✓ •² ∧		
$x^2 + 2x - 3 = 0$		$x^2 + 2x - 3 = 0$. —		
x = -3, 1	•³ ✓	x = -3, 1	• ³ 🗸 1		

8.(continued)

Commonly Observed Responses:

Candidate E - second derivative

$$f''(x) = 6x + 6$$

•⁵ ✓

$$f''(-3) < 0$$

Slope or shape

so max at (-3,32)

f''(1) > 0

Candidate F - second derivative

f''(x) = 6x + 6

$$f''(-3) = -12$$
,

f''(1) = 12

so min at (1,0) so max at (-3,32)

For the table of signs for a derivative, accept:

x	-3 ⁻	-3	-3^{+}
f'(x)	+	0	_
Slope or	/		\
or			
shape			

AND

f'(x)

Slope shape

> Arrows are taken to mean 'in the neighbourhood of'

AND

<u>x</u>	\rightarrow	1	\rightarrow
f'(x)	-	0	+
Slope or	\		/
or			
shape			_ /

Arrows are taken to mean 'in the neighbourhood of'

f'(x)Slope or shape

Where a < -3 and -3 < b < 1

AND

\boldsymbol{x}	c	1	d
f'(x)	-	0	+
Slope or	\		/
or			
shape			_ /

Where -3 < c < 1 and d > 1

For the table of signs for a derivative, accept:

Since the function is continuous $-3 \rightarrow 1$ is acceptable

x	а	-3	b	1	С
f'(x)	+	0	_	0	+
Slope or shape					

Since the function is continuous -3 < b < 1 is acceptable

- For this question do not penalise the omission of 'x' or the word 'shape'/'slope'.
- Stating values of f'(x) is an acceptable alternative to writing '+' or '-' signs.
- Acceptable variations of f'(x) are: f', $\frac{df}{dx}$, $\frac{dy}{dx}$, $3x^2 + 6x 9$ and 3(x+3)(x-1)but NOT $x^2 + 2x - 3$ or (x+3)(x-1).