7.(a)
$$\log_2 5 + \log_2 \frac{1}{40}$$

 $= \log_2 \frac{5}{40}$
 $= \log_2 \frac{1}{8}$
 $= -3$.

 $\log_8 8 = \log_8 8 = \log_$

0 < 0 < 1

logs 0 is undefined

Question			Generic scheme	Illustrative scheme	Max mark
7.	(a)		•¹ use laws of logs	$\bullet^1 \log_2 \frac{5}{40}$	2
			•² evaluate log	•2 -3	

Notes:

- 1. Do not penalise the omission of the base of the logarithm at \bullet^1 .
- 2. Correct answer with no working, award 0/2.

Commonly Observed Responses:

Candidate A - introducing a variable

$$\log_2\left(5 \times \frac{1}{40}\right)$$

•¹ **✓**

$$\log_2 \frac{1}{8}$$

$$2^x = \frac{1}{8}$$

$$x = -3$$

•² ✓

	(b
--	----

•³ state range

•
3
 $0 < a < 1$

1

Notes:

3. At \bullet^3 accept "a > 0 and a < 1" or "a > 0, a < 1".

Commonly Observed Responses: