$$\int 2x^{5} - 6x^{\frac{1}{2}} dx$$

$$= \frac{2x^{6}}{6} - \frac{6x^{\frac{3}{2}}}{\frac{3}{2}} + c$$

 $=\frac{x^{6}}{3}-4x^{3/2}+C$

Question		on	Generic scheme	Illustrative scheme	Max mark
6.			•¹ express second term in integrable form	$ \bullet^1 \dots - 6x^{\frac{1}{2}} $	4
			•² integrate one term	$e^2 \frac{2}{6}x^6 \dots \text{ or } \dots - \frac{6x^{\frac{3}{2}}}{\frac{3}{2}}$	
			•³ integrate other term	$-3 \dots -\frac{6x^{\frac{3}{2}}}{\frac{3}{2}} \text{ or } \frac{2}{6}x^{6}\dots$	
			• ⁴ complete integration	$\bullet^4 \frac{1}{3}x^6 - 4x^{\frac{3}{2}} + c$	

Notes:

- 1. The mark for integrating the final term is only available if candidates integrate a term with
- 2. Do not penalise the appearance of an integral sign and/or dx throughout.
- 3. Do not penalise the omission of '+c' at \bullet^2 or \bullet^3 .
- 4. All coefficients must be simplified at 4 stage for 4 to be awarded.

5. Accept
$$\frac{x^6 - 12x^{\frac{3}{2}}}{3} + c$$
 for •⁴ but do not accept $\frac{2x^6 - 24x^{\frac{3}{2}}}{6} + c$.

6. \bullet^2 , \bullet^3 and \bullet^4 are not available within an invalid strategy.

Commonly Observed Responses:

Candidate A Candidate B - integrating over two lines $\frac{2x^6}{6} - 6x^{\frac{1}{2}}$ $\left(\left(2x^5-6x^{\frac{1}{2}}\right)dx\right)$ $=\frac{2x^6}{6}-\frac{6x^{\frac{3}{2}}}{\frac{3}{2}}+c$ $= \frac{2x^6}{6} - 4x^{\frac{3}{2}} + c$ $=\frac{1}{3}x^6-4\sqrt{x}+c$

$= \frac{2x^6}{6} - \frac{6x^{\frac{3}{2}}}{\frac{3}{2}} + c$

$$=\frac{1}{3}x^6 - 4x^{\frac{3}{2}} + c$$

Candidate C - insufficient evidence

$$\int 2x^{5} - 6x^{\frac{1}{2}} dx$$

$$\frac{1}{3}x^{6} - 9x^{\frac{3}{2}} + c$$
• 2 • • 3 • • 4 *

Candidate D

$$\vdots$$

$$= \frac{1}{3}x^6 - 4x^{\frac{3}{2}}$$

$$= \frac{1}{3}x^6 - 4\sqrt{x^3} + c$$

$$\bullet^4 \checkmark$$