| Question | Number | 3. |
$$\log_5 x - \log_5 3 = 2 \log_5 5$$
 | $\log_5 x - \log_5 x$

Question			Generic scheme	Illustrative scheme	Max mark
3.			Method 1	Method 1	3
			•¹ apply $\log_5 x - \log_5 y = \log_5 \frac{x}{y}$	$\bullet^1 \log_5 \frac{x}{3} \dots$	
			•² write in exponential form	$\bullet^2 \frac{x}{3} = 5^2$	
			\bullet ³ process for x	•³ 75	
			Method 2	Method 2	3
			y	$\bullet^1 \log_5 \frac{x}{3} \dots$	
			• apply $m \log_5 x = \log_5 x^m$	$\bullet^2 \dots = \log_5 5^2$	
			• 3 process for x	•³ 75	
N1 - 4 -	Notes				

Notes:

- Each line of working must be equivalent to the line above within a valid strategy, however see Candidates A and B for exceptions.
 Where candidates do not use exponentials at •², •³ is not available see Candidate C.

Commonly Observed Responses:

Candidate A - inco	rrect exponential	Candidate B			
$\log_5 \frac{x}{3} = 2$	•1 ✓	$\log_5 3x = 2$	• ¹ ×		
$\frac{x}{3}=2^5$	•² x	$3x = 5^2$	• ² 🗸		
<i>x</i> = 96	● ³ ✓ 1	$x = \frac{25}{3}$	• ³ 🗸		
Candidate C - no use of exponentials					
$\log_5 \frac{x}{3} = 2$	•¹ ✓				
$\frac{x}{3} = 10$	•² *				
<i>x</i> = 30	•³ *				