$$M(4,3)$$

$$M(4,3)$$

$$M_{P0} = \frac{0-6}{10+2}$$

$$= -\frac{6}{17}$$

$$= -\frac{1}{2}$$

$$M_{Perp} = 2$$

= 2x-5

y-3=2(x-4)

y-3=2x-8

2.

Question			Generic scheme	Illustrative scheme	Max mark
2.			•¹ find midpoint of PQ	•1 (4,3)	4
			•² calculate gradient of PQ	• $^2 -\frac{1}{2}$ or $-\frac{6}{12}$	
			•³ state perpendicular gradient	\bullet^3 2 stated or implied by \bullet^4	
			• determine equation of perpendicular bisector	$\bullet^4 y = 2x - 5$	

- •⁴ is only available as a consequence of using a perpendicular gradient and a midpoint.
 The gradient of the perpendicular bisector must appear in fully simplified form at •³ or •⁴ stage for •4 to be awarded.
- 3. At \bullet^4 , accept 2x y = 5, y 2x = -5 or any other rearrangement of the equation where the constant terms have been simplified.

Commonly Observed Responses: