Question			Generic scheme	Illustrative scheme	Max mark
13.	(a)	(i)	•¹ state exact value	•¹ √3	1
		(ii)	•² interpret notation	• $f(2x)$ or $2\sin(g(x))$	2
			$ullet^3$ state expression for $fig(gig(xig)ig)$	$\bullet^3 2\sin 2x$	

Notes:

- 1. For $f(g(x)) = 2\sin 2x$ without working, award both \bullet^2 and \bullet^3 .
- 2. Working for (a)(ii) may be found in (a)(i)

Commonly Observed Responses:

didate i) $f($		$) = 4 \sin x \qquad \bullet^2 \times \bullet^3 \checkmark_1$	Candidate B - Beware of "2 attempts" $f(g(x)) = 2\sin x \qquad \bullet^2 \times \bullet^3 \times$ $f(2x) = 2\sin 2x$	
(b)	(i)	• ⁴ find the value of $\sin p$	•4 1/6	1
	(ii)	$ullet^5$ expand $fig(gig(pig)ig)$ using double angle formula	• $5 \times 2 \sin p \cos p$ or $4 \sin p \cos p$ stated explicitly	3
		\bullet^6 find value of $\cos p$	$\bullet^6 \frac{\sqrt{35}}{6}$	
		• substitute and determine exact value	$\bullet^7 \ 2 \times 2 \times \frac{1}{6} \times \frac{\sqrt{35}}{6}$	
			leading to $\frac{\sqrt{35}}{9}$	

Notes:

- 1. 5 is not available for expansions which do not involve p. 6 and 7 are still available. However, accept $\sin^{-1}\left(\frac{1}{6}\right)$ in place of p see Candidate C.
- 2. \bullet^7 is only available as a consequence of substituting into a valid formula from \bullet^5 .
- 3. Do not penalise trigonometric ratios which are less than -1 or greater than 1 throughout this question.

Commonly Observed Responses:

Candidate C

$$f(g(p)) = 4\sin\left(\sin^{-1}\left(\frac{1}{6}\right)\right)\cos\left(\sin^{-1}\left(\frac{1}{6}\right)\right) \bullet^{5} \checkmark$$

$$4 \times \frac{1}{6} \times \frac{\sqrt{35}}{6}$$

$$\frac{\sqrt{35}}{9}$$

$$\bullet^{7} \checkmark$$

[END OF MARKING INSTRUCTIONS]