Question			Generic scheme	Illustrative scheme	Max mark
10.	(a)		•¹ use -5 in synthetic division or evaluation of quartic	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
			•² complete division/evaluation and interpret result	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Notes:

- 1. Communication at •² must be consistent with working at that stage i.e. a candidate's working must arrive legitimately at 0 before •² can be awarded.
- 2. Accept any of the following for \bullet^2 :
 - 'f(-5) = 0 so (x+5) is a factor'
 - 'since remainder = 0, it is a factor'
 - the '0' from any method linked to the word 'factor' by 'so', 'hence', \therefore , \rightarrow , \Rightarrow etc.
- 3. Do not accept any of the following for \bullet^2 :
 - double underlining the '0' or boxing the '0' without comment
 - 'x = -5 is a factor', '... is a root'
 - the word 'factor' only, with no link.

Commonly Observed Responses:

Candidate A - grid method

with no remainder

$$\therefore (x+5)$$
 is a factor

Candidate B - grid method

$$\begin{array}{c|cccc}
x^3 \\
x & x^4 & -2x^3 \\
5 & 5x^3 & & & \bullet^1
\end{array}$$

$$\therefore (x+5)(x^3 - 2x^2 + 3x - 6) = x^4 + 3x^3 - 7x^2 + 9x - 30$$

\therefore (x+5) is a factor

Question		on	Generic scheme	Illustrative scheme	
10.	(b)		 identify cubic and attempt to factorise find second factor 	• 3 eg 1	5
			•5 identify quadratic	$ \bullet^5 x^2 + 3 $	
			• ⁶ interpret lack of solutions of quadratic	•6 $b^2 - 4ac = -12 < 0$ no (further real) solutions OR $x^2 = -3$ or $x^2 = 3$ no (further real) solutions	
Net			• ⁷ state solutions	$\bullet^7 \ \ x = -5, \ x = 2$	

Notes:

- 4. Candidates who arrive at $(x+5)(x-2)(x^2+3)$ by using algebraic long division or by inspection gain \bullet^3 , \bullet^4 and \bullet^5 .
- 5. Evidence for •6 may appear in the quadratic formula.
- 6. At •6 accept interpretations such as "no further roots", "no solutions" and "cannot factorise further" with justification.
- 7. At \bullet 6 accept $x = \sqrt{-3}$ leading to "not possible" and "not real".
- 8. Where there is no reference to $b^2 4ac$ accept '-12 < 0 so no real roots' with the remaining roots stated for \bullet^6 see candidates E and F.
- 9. Do not accept any of the following for •6:
 - $(x+5)(x-2)(x^2+3)$ no further roots/cannot factorise further.
 - (x+5)(x-2)(...)(...) no further roots/cannot factorise further.
- 10. Where the quadratic factor obtained at \bullet^5 can be factorised, \bullet^6 and \bullet^7 are not available.
- 11. \bullet^7 is only available where \bullet^6 has been awarded.

Question	Generic s	cheme	Illustrative scheme		Max mark						
10.(continued)										
Commonly Observed Responses:											
Candidate C		Ca	andidate D								
(x+5)(x-2)	x^2+3	• ⁵ ✓ (x	$(x+5)(x-2)(x^2+3)$	•⁵ ✓							
$b^2 - 4ac = 0 -$, •	· ·	$^{2}-4ac<0$	• ⁶ ^							
so no solutions $x = -5$, $x = 2$		_	ono solutions $=-5$, $x=2$	•7 ✓	2						
Candidate E		_	andidate F	_							
(x+5)(x-2)	x^2+3)	,	$(x+5)(x-2)(x^2+3)$	•⁵ ✓							
-12 < 0 so no solutions			-12 < 0 o no solutions	_6 ^	₂ 7 ^						
x = -5, x = 2		•7 ✓	THO SOLUCIONS	·	•						
Candidate G -	grid method										
(a) x^3	$-2x^2$ 3x -6	٦									
$x = x^4$	$-2x^{3}$ $+3x^{2}$ $-6x$:									
$5 5x^3$	-10x + 15x -30										
(b)											
$\begin{array}{c c} x^2 \\ x & x^3 \end{array}$											
		•³ ✓									
	or evidence of the co										
•	ich may be in the gri erms in the diagonal	·									
summing to the	e second and third to										
cubic respectiv	ety.										

- **0***x* 3 3*x*
- $(x+5)(x-2)(x^2+3)$

- $b^2 4ac = -12 < 0$ \therefore no more solutions x = -5, x = 2
- •7 ✓