9a)
$$x^{2} + (3x+7)^{2} - 4x - 6(3x+7) - 7 = 0$$

 $x^{2} + 9x^{2} + 42x + 49 - 4x - 18x - 42 - 7 = 0$
 $10x^{2} + 20x = 0$
 $10x(x+2) = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $y = 3(0) + 7$
 $y = 3(-2) + 7$

 $(x-2)^{2}+(y-3)^{2}=10$

(0,7) (-2,1)

b) midpa = (6-2, 7+1) = (-1,4)

Centre: (2,3)

radius [32+12 = 510

Question		n	Generic scheme	Illustrative scheme		Max mark	
9.	(a)		•¹ substitute for <i>y</i> in equation of circle	•1	$x^2 + (3x + 7)$ $= 0$	$(x^2 - 4x - 6(3x + 7) - 7)$	5
			•² arrange in standard quadratic form	•2	$10x^2 + 20x =$	= O	
			•³ factorise	•3	10x(x+2) =	= 0	
					•4	●5	
			• state <i>x</i> coordinates	•4	0	-2	
			• 5 state corresponding y coordinates	• ⁵	7	1	

Notes:

- 1. \bullet^1 is only available if '= 0' appears by the \bullet^3 stage.
- 2. At \bullet^3 , the quadratic must lead to two distinct real roots for \bullet^4 and \bullet^5 to be available.
- 3. At •3 do not penalise candidates who fail to extract the common factor or who have divided the quadratic equation by 10.
- 4. If a candidate arrives at an equation which is not a quadratic at •2 stage, then •3, •4 and •5 are not available
- 5. 3 is available for substituting correctly into the quadratic formula.
- 6. •⁴ and •⁵ may be marked either horizontally or vertically.
- 7. Ignore incorrect labelling of P and Q.

Commonly Observed Responses:

Candidate A - substituting for y

$$\left(\frac{y-7}{3}\right)^2 + y^2 - 4\left(\frac{y-7}{3}\right) - 6y - 7 = 0 \bullet^1 \checkmark$$

$$\frac{10y^2 - 80y + 70}{9} = 0$$

$$10(y-1)(y-7) = 0$$

$$y = 1 \text{ or } y = 7$$

 $x = -2 \text{ or } x = 0$

Question		on	Generic scheme	Illustrative scheme	Max mark
9.	(b)		• state centre of circle	•6 (2, 3)	4
			• ⁷ calculate midpoint of PQ	•7 (-1, 4)	
			• ⁸ calculate radius of small circle	• ⁸ √10	
			•9 state equation of small circle	•9 $(x-2)^2 + (y-3)^2 = 10$	

Notes:

- 8. Evidence for •⁶ may appear in part (a).
 9. Where a candidate uses coordinates for P and Q without supporting working, •⁷ is not available, however •8 and •9 may be awarded.

 10. Where candidates find the equation of the larger circle •8 and •9 are not available.

Commonly Observed Responses:

Candidate B - using substitution		Candidate C - using tangency		
Equation of smaller circle of form		Equation of smaller circle of form		
$(x-2)^2 + (y-3)^2 = r^2$	•6 ✓	$(x-2)^2 + (y-3)^2 = r^2$	•6 ✓	
Midpoint PQ $(-1, 4)$	• ⁷ ✓	Since $y = 3x + 7$ is tangent to smaller circle		
$(-1-2)^2 + (4-3)^2 = r^2$		$10x^2 + 20x + 20 - r^2 = 0$ has equal roots		
$r^2 = 10$	•8 ✓	$\Rightarrow 20^2 - 4(10)(20 - r^2) = 0$	• ⁷ ✓	
$(x-2)^2 + (y-3)^2 = 10$	•9 ✓	$\Rightarrow r^2 = 10$	•8 ✓	
		$(x-2)^2 + (y-3)^2 = 10$	•9 ✓	
Candidate D - using P or Q to mid	d-point as			
radius :				
$r = \sqrt{\left(-2+1\right)^2 + \left(1-4\right)^2} = \sqrt{10}$	• ⁸ ×			
or				
$r = \sqrt{(0+1)^2 + (7-4)^2} = \sqrt{10}$	• ⁸ x			
$(x-2)^2 + (y-3)^2 = 10$	• ⁹ ✓ 2			