$$= \left(\frac{2^{4} - 5(2)^{3} + 2^{2} + 8(2)}{3}\right) - \left(\frac{(-1)^{4} - 5(-1)^{3} + (-1)^{2} + 8(-1)}{4}\right)$$

$$= \left(\frac{2^{4} - 5(2)^{3} + 2^{2} + 8(2)}{3}\right) - \left(\frac{(-1)^{4} - 5(-1)^{3} + (-1)^{2} + 8(-1)}{3}\right)$$

$$= \frac{32}{3}$$

4.a) $\left[\frac{x^3-5x^2+2x+8}{x^3-5x^2+2x+8}\right] = \left[\frac{x^4-5x^3-2x^2+8x}{4}\right]^2$

 $=\frac{16}{3} - \frac{32}{3} = \frac{-16}{3}$

$$= \frac{63}{4} \text{ units}$$

$$= \frac{63}{4} \text{ units}$$
6) $\int_{2}^{4} - ... dx$

$$= \frac{63}{4} + \frac{16}{3} = \frac{253}{12} \text{ units}$$

b)
$$\int_{2}^{4} - ... dx$$

= $\left(\frac{14}{4} - 5(4)^{3} + 4^{2} + 8(4)\right) - \frac{32}{3}$ Total area = $\frac{63}{4} + \frac{16}{3} = \frac{253}{12}$ units

Question			Generic scheme	Illustrative scheme	Max mark
4.	(a)		•¹ state appropriate integral	$\bullet^{1} \int_{-1}^{2} (x^{3} - 5x^{2} + 2x + 8) dx$	4
			•² integrate	$e^2 \frac{1}{4}x^4 - \frac{5}{3}x^3 + \frac{2x^2}{2} + 8x$	
			•³ substitute limits	$\bullet^{3} \left(\frac{1}{4} (2)^{4} - \frac{5}{3} (2)^{3} + (2)^{2} + 8(2) \right)$	
				$-\left(\frac{1}{4}(-1)^4 - \frac{5}{3}(-1)^3 + (-1)^2 + 8(-1)\right)$	
			• ⁴ evaluate area	• $\frac{63}{4}$ or 15.75	

Notes:

- 1. Limits and 'dx' must appear at the \bullet^1 stage for \bullet^1 to be awarded.
- 2. Where a candidate differentiates one or more terms at \bullet^2 , then \bullet^3 and \bullet^4 are not available.
- 3. Candidates who substitute limits without integrating, do not gain \bullet^3 or \bullet^4 .
- 4. Do not penalise the inclusion of +c.
- 5. Do not penalise the continued appearance of the integral sign after •1.
- 6. 4 is not available where solutions include statements such as $-\frac{63}{4} = \frac{63}{4}$. See Candidate C.

Commonly Observed Responses:

Candidate A

$$\int_{-1}^{2} \left(x^3 - 5x^2 + 2x + 8 \right)$$

$$= \frac{1}{4}x^4 - \frac{5}{3}x^3 + \frac{2x^2}{2} + 8x$$

$$=\frac{1}{4}x^4 - \frac{3}{3}x^3 + \frac{3}{2}x^4 + 8x$$

$$=\frac{63}{4}$$

Candidate B - evidence of substitution using a calculator

$$\int \left(x^3 - 5x^2 + 2x + 8\right) dx$$

$$=\frac{1}{4}x^4-\frac{5}{3}x^3+\frac{2x^2}{2}+8x$$

$$= \frac{1}{4}x^4 - \frac{5}{3}x^3 + \frac{2x^2}{2} + 8$$

$$=\frac{32}{3}-\left(-\frac{61}{12}\right)$$

$$=\frac{63}{4}$$

Candidate C - communication for •4

$$\int_{2}^{-1} (x^{3} - 5x^{2} + 2x + 8) dx$$
 •1

$$=-\frac{63}{4}$$
 , hence area is $\frac{63}{4}$.

However
$$-\frac{63}{4} = \frac{63}{4}$$
 square units does not gain •⁴

Question			Generic scheme	Illustrative scheme	Max mark
4.	(b)		Method 1	Method 1	3
			• ⁵ state appropriate integral	$\int_{2}^{4} \left(x^{3} - 5x^{2} + 2x + 8 \right) dx$	
			• ⁶ evaluate integral	$-\frac{16}{3}$	
			• ⁷ interpret result and evaluate total area	• $\frac{253}{12}$ or 21.083	
			Method 2	Method 2	
			• ⁵ state appropriate integral	$\int_{2}^{4} \left(0 - \left(x^{3} - 5x^{2} + 2x + 8 \right) \right) dx$	
			• ⁶ substitute limits	$ \begin{vmatrix} \bullet^6 & -\left(\frac{1}{4}(4)^4 - \frac{5}{3}(4)^3 + (4)^2 + 8(4)\right) - \end{vmatrix} $	
				$\left(-\left(\frac{1}{4}(2)^4 - \frac{5}{3}(2)^3 + (2)^2 + 8(2)\right)\right)$	
			• ⁷ evaluate total area	$e^7 \frac{253}{12}$ or 21.083	

Notes:

- 7. For candidates who only consider $\int_{-1}^{4} \dots dx$ or any other invalid integral, award 0/3.
- 8. In part (b), at \bullet^5 do not penalise the omission of 'dx'.
- 9. In Method 1, •5 may be awarded for $\left[\frac{1}{4}x^4 \frac{5}{3}x^3 + \frac{2x^2}{2} + 8x\right]_2^4$ or $\left(\frac{1}{4}(4)^4 \frac{5}{3}(4)^3 + (4)^2 + 8(4)\right) \left(\frac{1}{4}(2)^4 \frac{5}{3}(2)^3 + (2)^2 + 8(2)\right)$.
- 10. In Method 2, \bullet^5 may be awarded for $\left[\frac{1}{4}x^4 \frac{5}{3}x^3 + \frac{2x^2}{2} + 8x\right]_4^2$ or \bullet^5 and \bullet^6 may be awarded for $\left(\frac{1}{4}(2)^4 \frac{5}{3}(2)^3 + (2)^2 + 8(2)\right) \left(\frac{1}{4}(4)^4 \frac{5}{3}(4)^3 + (4)^2 + 8(4)\right)$.
- 11. 7 is not available to candidates where solutions include statements such as $-\frac{16}{3} = \frac{16}{3}$ square units. See Candidate D.
- 12. In Method 1, where a candidate's integral leads to a positive value, \bullet^7 is not available.
- 13. Where a candidate has differentiated in both parts of the question see Candidate E.

Question	Generic scheme	Illustrative scheme	Max mark
----------	----------------	---------------------	-------------

(b) (continued)

Commonly Observed Responses:

Candidate D - communication for •7

$$\int_{2}^{4} \left(x^{3} - 5x^{2} + 2x + 8 \right) dx = -\frac{16}{3}$$

$$\frac{63}{4} + \frac{16}{3} = \frac{253}{12}$$

However, \bullet^7 is not available where statements such as " $-\frac{16}{3} = \frac{16}{3}$ square units" or "ignore negative" appear.

Candidate E - differentiation in (a) and (b)

(a)
$$\int_{-1}^{2} (x^3 - 5x^2 + 2x + 8) dx$$

$$=3x^2-10x+2$$

$$= 3x^{2} - 10x + 2$$

$$= (3(2)^{2} - 10(2) + 2) - (3(-1)^{2} - 10(-1) + 2)$$

$$=-21$$
 Area $= 21$

(b)
$$(3(4)^2 - 10(4) + 2) - (3(2)^2 - 10(2) + 2) = 16$$
 •5 • •6 • 1

Total Area = 5

• ⁷ ✓ 2 see note 12