9.
$$\cos 2x - 5\cos x + 3 = 0$$

 $2\cos^{3}x - 1 - 5\cos x + 3 = 0$
 $2\cos^{3}x - 5\cos x + 2 = 0$

$$2\cos^{2}x - 5\cos x + 2 = 0$$

$$(2\cos x - 1)(\cos x - 2)$$

$$\cos x - \frac{1}{2} \cos x = 2$$

SA

$$(2\cos x) = \frac{1}{2} \cos x = 2$$

$$\cos x = \frac{1}{2} \cos x = 2$$

$$\cos x = 60$$

$$\cos x = 60$$

$$x = 60$$

 $x = 360 - 60 = 300$
 $x = 60^{\circ}, 300^{\circ}$

Question		Generic Scheme	Illustrative Scheme	Max Mar
9.		•¹ substitute for $\cos 2x^{\circ}$ into equation	• $1 \cos^2 x^\circ - 1$	5
		•² express in standard quadratic form	• $2\cos^2 x^\circ - 5\cos x^\circ + 2 = 0$	
		•³ factorise	•3 $(2\cos x^{\circ} - 1)(\cos x^{\circ} - 2) = 0$	
			•4	
		• ⁴ solve for $\cos x^{\circ}$	$\bullet^4 \cos x^\circ = \frac{1}{2} \qquad \cos x^\circ = 2$	
Mata		•5 solve for x	• $x = 60, 300$ 'no solutions'	

Notes

- 1. •¹ is not available for simply stating $\cos 2x^{\circ} = 2\cos^2 x^{\circ} 1$ with no further working.
- 2. In the event of $\cos^2 x^\circ \sin^2 x^\circ$ or $1 2\sin^2 x^\circ$ being substituted for $\cos 2x^\circ$, \bullet^1 cannot be awarded until the equation reduces to a quadratic in $\cos x^\circ$.
- 3. Substituting $2\cos^2 A 1$ or $2\cos^2 \alpha 1$ for $\cos 2x^\circ$ at the \bullet^1 stage should be treated as bad form provided the equation is written in terms of x at \bullet^2 stage. Otherwise, \bullet^1 is not available.
- 4. Do not penalise the omission of degree signs.
- 5. '=0' must appear by \bullet^3 stage for \bullet^2 to be awarded. However, for candidates using the quadratic formula to solve the equation, '=0' must appear at \bullet^2 stage for \bullet^2 to be awarded.
- 6. $\cos x^{\circ} = \frac{5 \pm \sqrt{9}}{4}$ gains •3.
- 7. Candidates may express the equation obtained at \bullet^2 in the form $2c^2 5c + 2 = 0$ or $2x^2 5x + 2 = 0$. In these cases, award \bullet^3 for (2c 1)(c 2) = 0 or (2x 1)(x 2) = 0. However, \bullet^4 is only available if $\cos x^\circ$ appears explicitly at this stage. See Candidate A.
- 8. The equation $2+2\cos^2 x^\circ 5\cos x^\circ = 0$ does not gain \bullet^2 unless \bullet^3 has been awarded.
- 9. •⁴ and •⁵ are only available as a consequence of trying to solve a quadratic equation. See Candidate B. However, •⁵ is not available if the quadratic equation has repeated roots.
- 10. •³, •⁴ and •⁵ are not available for any attempt to solve a quadratic equation written in the form $ax^2 + bx = c$. See Candidate C.
- 11. ●⁵ is only available for 2 valid solutions within the stated range. Ignore 'solutions' outwith the range. However, see Candidate E.
- 12. Accept $\cos x = 2$ for \bullet^5 . See Candidate A.

Question		Generic Scheme			Illustrative Scheme		Max Mark				
9.	(continue	d)									
Con	Commonly Observed Responses:										
Candidate A					Candidate B - not solving a quadratic						
2 cc	$os^2 x^\circ - 1 = 5 c$	$os x^{\circ} - 3$	•¹ ✓	2 cc	$os^2 x^\circ - 1 = 5\cos x^\circ - 3$	•¹ ✓					
	-5c+2=0		• ² ✓		$\cos^2 x^\circ - 5\cos x^\circ + 2 = 0$	• ² ✓					
(2 <i>c</i>	-1)(c-2)=	0	•³ ✓		$\cos x^{\circ} + 2 = 0$	•³ x					
<i>c</i> =	$\frac{1}{2}$, $c = 2$		• ⁴ x	cos	$x^{\circ} = \frac{2}{3}$	• ⁴ ✓ 2	•5 ∧				
<i>x</i> =	60, 300 cos	$x^0=2$	• ⁵ ✓ 1								
Can	Candidate C - not in standard quadratic form				Candidate D - reading $\cos 2x^{\circ}$ as $\cos^2 x^{\circ}$						
2 cc	$os^2 x^\circ - 1 = 5 c$	$os x^{\circ} - 3$	•¹ <u>✓</u>		$^{2}x^{\circ} = 5\cos x^{\circ} - 3$	•¹ 🗴					
	$2\cos^2 x^\circ - 5\cos x^\circ = -2$		• ²	cos	$^{2}x^{\circ} - 5\cos x^{\circ} + 3 = 0$	•² <mark>✓ 1</mark>					
cos	$x^{\circ}(2\cos x^{\circ} -$	5)=-2	•³ ✓ 2	cos	$x^{\circ} = \frac{5 \pm \sqrt{13}}{2}$	•³ <mark>√ 1</mark>					
cos	$x^{\circ} = -2$, $2\cos\theta$	$s x^{\circ} - 5 = -2$			Z	• ⁴ ∧• ⁵	٨				
	=	$\Rightarrow \cos x = \frac{3}{2}$	• ⁴ *								
No s	solutions		● ⁵ 🗶								
Can	Candidate E										
	:		•¹ ✓ •² ✓								
(co	$(\cos x^{\circ} - 1)(\cos x^{\circ} - 2) = 0 \qquad \bullet^{3} $										
cos	$x^{\circ}=1$,	$\cos x^{\circ} = 2$	• ⁴								
	x = 0 No	o solutions	● ⁵ ✓ 1								