8.
$$\log_6 x + \log_6 (x+5) = 2\log_6 6$$

$$log_6 x(x+5) = log_6 6^2$$

 $x^2 + 5x = 36$

x2+5x-36=0

(x+9)(x-4)

2=49 (2=4)

Question			Generic Scheme	Illustrative Scheme	Max Mark
8.			Method 1	Method 1	4
			• apply $\log_6 x + \log_6 y = \log_6 xy$		
			•² write in exponential form		
			•³ express in standard quadratic form		
			• solve quadratic and state solution of log equation	\bullet^4 -9, 4 and $x > 0 \Rightarrow x = 4$	
			Method 2	Method 2	
			$\bullet^1 \text{ apply } \log_6 x + \log_6 y = \log_6 xy$		
			• apply $m \log_6 x = \log_6 x^m$	$\bullet^2 \ldots = \log_6 6^2$	
			•³ express in standard quadratic form		
Nata			• solve quadratic and state solution of log equation	\bullet^4 -9, 4 and $x > 0 \Rightarrow x = 4$	

Notes:

- 1. Accept $\log_6 x(x+5) = \dots$ for \bullet^1 .
- 2. 2 is not available for $x(x+5)=2^6$; however candidates may still gain 3 and 4.
- 3. \bullet^3 and \bullet^4 are only available if the quadratic reached at \bullet^3 is obtained by applying the rules in \bullet^1 and \bullet^2 .
- 4. 4 is only available for solving a polynomial of degree two or higher.
- 5. At \bullet^4 , accept any indication that -9 has been discarded. For example, scoring out x=-9 or underlining x=4.

Commonly Observed Responses:

##