$$\frac{1}{3} = \frac{180}{3} = 60$$

$$y-0=\frac{1}{\sqrt{3}}(x+2)$$
 $\sqrt{3}y=1(x+2)$
 $\sqrt{3}y=x+2$

m=tan30= 13

Question		on	Generic scheme	Illustrative scheme	Max mark
5.			•¹ use $m = \tan \theta$	$\bullet^1 m = \tan \frac{\pi}{6} \text{or} m = \tan 30^\circ$	3
			•² evaluate exact value		
			•³ determine equation	• $y = 3$ eg $y\sqrt{3} = x + 2$ or $y = \frac{1}{\sqrt{3}}x + \frac{2}{\sqrt{3}}$	

Notes:

- 1. Do not award \bullet^1 for $m = \tan^{-1} \frac{\pi}{6}$. However \bullet^2 and \bullet^3 are still available. Where candidates state $m = \tan^{-1} \frac{\pi}{3}$ only \bullet^3 is available.
- 2. Where candidates make no reference to a trigonometric ratio or use an incorrect trigonometric ratio, \bullet^1 and \bullet^2 are unavailable.
- 3. 3 is only available as a consequence of attempting to use a tan ratio. See Candidate F
- 4. Accept $y = \frac{1}{\sqrt{3}}(x+2)$ for \bullet^3 , but do not accept $y-0 = \frac{1}{\sqrt{3}}(x+2)$.

Commonly Observed Responses:					
Candidate A		Candidate B			
$m = \tan \frac{\pi}{3}$	•¹ x	$m = \frac{1}{\sqrt{3}}$ (with or without a diagram) $\bullet^1 \land \bullet^2 \checkmark 2$			
$m = \sqrt{3}$	• ²	$y = \frac{1}{\sqrt{3}}x + \frac{2}{\sqrt{3}}$			
$y = \sqrt{3}x + 2\sqrt{3}$	•³ 1	√3 √3 •³ <u>√1</u>			
Candidate C		Candidate D			
$m = \tan \theta$ (with or without a c	liagram) •¹ ^	$m = \tan \theta$ (with or without a diagram) • ^ ^			
$m=\frac{1}{\sqrt{3}}$	•² <mark>✓ 1</mark>	$m = \sqrt{3}$			
$\sqrt{3}$	نت	$y = \sqrt{3}x + 2\sqrt{3}$			
Candidate E		Candidate F			
$m = \tan \theta = \frac{\pi}{6}$	•¹ x	$m = \tan \frac{\pi}{3}$			
$m = \frac{1}{m}$	•² ✓ 1	m = 60 $y = 60(x+2)$ • ² * • ³ *			
$m = \frac{1}{\sqrt{3}}$	· [·]	y = 60(x+2)			