12.
$$f'(x) = -4\cos(3x - \frac{\pi}{6}) \times 3$$

 $= -12\cos(3x - \frac{\pi}{6})$ $\cos(3x - \frac{\pi}{6})$ $\cos(3x - \frac{\pi}{6})$

= -12 cos
$$(2\pi)$$

= -12 cos (π)

=-12x =

Question		n	Generic Scheme	Illustrative Scheme	Max Mark
12.			•¹ start to differentiate	$\bullet^1 4\cos\left(3x-\frac{\pi}{3}\right)$	3
			•² complete differentiation	•²×3	
			•³ evaluate derivative	\bullet^3 $6\sqrt{3}$	

Notes:

- 1. Where candidates make no attempt to differentiate or use another invalid approach, \bullet^2 and \bullet^3 are not available.
- 2. At the \bullet^1 and \bullet^2 stage, candidates who work in degrees cannot gain \bullet^1 . However \bullet^2 and \bullet^3 are still available.
- 3. At the \bullet ³ stage, do not penalise candidates who work in degrees or in radians and degrees.
- 4. Ignore the appearance of +c at any stage.

Commonly Observed Responses:

Commonly Observed Responses.							
Candidate A Differentiating over two lines	Candidate B	Candidate C					
$f'(x) = 4\cos\left(3x - \frac{\pi}{3}\right) \bullet^{1} \checkmark$	$4\cos\left(3x-\frac{\pi}{3}\right)\times\frac{1}{3} \qquad \bullet^1 \checkmark \bullet^2 \checkmark$	$4\cos\left(3x-\frac{\pi}{3}\right) \qquad \bullet^1 \checkmark \bullet^2 \land$					
$f'(x) = 12\cos\left(3x - \frac{\pi}{3}\right) \bullet^2 \land$	$\frac{2\sqrt{3}}{3}$ • ³ \checkmark 1	2√3 •³ <u>√ 1</u>					
6√3 •³ <u>√ 1</u>							
Candidate D	Candidate E	Candidate F					
$\pm 12\sin\left(3x - \frac{\pi}{3}\right) \qquad \bullet^1 \times$	$\pm 4\sin\left(3x-\frac{\pi}{3}\right)\dots$ •1 *	$-12\cos\left(3x-\frac{\pi}{3}\right)$ •1 *					
•² <u>*</u>	×3 •² ✓ 1	•² ✓					
±6 •³ ✓ 1	±6 •³ ✓ 1	$-6\sqrt{3}$ • 3 \checkmark 1					