9 (a) $$P_0 = 120 e^{-0.0079 \times 0}$$ = $120 \times e^{\circ}$ = 120 (b) $$0.85 \times 120 = 102$$ $$102 = 120 e^{-0.0079t}$$ $$\frac{102}{120} = e^{-0.0079t}$$ ln 0.85 = -0.0079t ine $$t = \frac{10.85}{-0.0079}$$ $$t = 20.6$$ | Question | | n | Generic scheme | Illustrative scheme | Max
mark | |----------|-----|---|---------------------------|---------------------|-------------| | 9. | (a) | | •¹ identify initial power | ● ¹ 120 | 1 | ## Notes: ## **Commonly Observed Responses:** | (b) | •² interpret information | • 2 $102 = 120e^{-0.0079t}$ stated or implied by • 3 | 4 | |-----|------------------------------|--|---| | | •³ process equation | $\bullet^3 \ e^{-0.0079t} = 0.85$ | | | | •4 write in logarithmic form | •4 $\log_e 0.85 = -0.0079t$ | | | | \bullet^5 process for t | • ⁵ 20·572 | | ## Notes: - 1. Candidates who interpret 15% incorrectly do not gain •², but •³, •⁴ and •⁵ are still available. See Candidate E. - 2. \bullet ³ may be implied by \bullet ⁴. - 3. Any base may be used at •4 stage. See Candidate A. - 4. Accept $\ln 0.85 = -0.0079t \ln e$ for •4. - 5. Accept 20·57 or 20·6 at •5. - 6. The calculation at \bullet^5 must follow from the valid use of exponentials and logarithms at \bullet^3 and \bullet^4 . - 7. For candidates who take an iterative approach to arrive at t = 20.6 award 1/4. However, if, in the iterations P_t is evaluated for t = 20.55 and t = 20.65 then award 4/4. ## **Commonly Observed Responses:** | , | | | | | |--|--|--|-----------------------------|--| | Candidate A | | Candidate B | | | | $102 = 120e^{-0.0079t}$ $e^{-0.0079t} = 0.85$ $\log_{10} 0.85 = -0.0079t \log_{10} e$ 20.6 | •2 ✓
•3 ✓
•4 ✓
•5 ✓ | $102 = 120e^{-0.0079t}$ $e^{-0.0079t} = 0.85$ $t = 20.6$ | •2 ✓
•3 ✓
•4 ^ •5 ✓ 1 | | | Candidate C | | Candidate D | | | | $\log_e 0.85 = -0.0079t$ | •⁴ ✓ | $\log_e 0.85 = -0.0079t$ | •⁴ ✓ | | | t = 20.6 years | •5 ✓ | t = 20 years 6 months | ● ⁵ 🗶 | | | subse | errect conversion
equent to answer
not penalised | | | | | Candidate E | | | | | | $15 = 100e^{-0.0079t}$ | • ² x | | | | | $e^{-0.0079t} = 0.15$ | •³ <u>✓ 1</u> | | | | | $\log_e 0.15 = -0.0079t$ | • ⁴ ✓ 1 | | | | | 240 · 1 | ● 5 ✓ 1 | | | |