(a)
$$2\cos x - 3\sin x = k\cos(x+a)$$

$$k = \sqrt{2^2 + 3^2}$$
 tana = $\frac{3}{2}$
= $\sqrt{13}$ $\alpha = 56.3^{\circ} \frac{5|A|}{T|C|}$

(b)
$$\sqrt{13} \cos(x+56.3)^{\circ} = 3$$

 $\cos(x+56.3)^{\circ} = \frac{3}{\sqrt{13}}$
 $x+56.3 = 33.7^{\circ}, 326.3^{\circ}, 343.7 + 16L$

$$z = -22.6^{\circ}, 270.0^{\circ}, 337.4^{\circ}$$

Question		on	Generic scheme	Illustrative scheme	Max mark
6.	(a)		•¹ use compound angle formula	• $k \cos x^{\circ} \cos a^{\circ} - k \sin x^{\circ} \sin a^{\circ}$ stated explicitly	4
			•² compare coefficients	• $k \cos a^{\circ} = 2$, $k \sin a^{\circ} = 3$ stated explicitly	
			•3 process for k	•³ √ 13	
			$ullet^4$ process for a and express in required form	$\bullet^4 \sqrt{13}\cos(x+56\cdot3\ldots)^\circ$	

Notes:

- 1. Accept $k(\cos x^{\circ}\cos a^{\circ} \sin x^{\circ}\sin a^{\circ})$ for \bullet^{1} .
 - Treat $k \cos x^{\circ} \cos a^{\circ} \sin x^{\circ} \sin a^{\circ}$ as bad form only if the equations at the \bullet^2 stage both contain k.
- 2. Do not penalise the omission of degree signs.
- 3. $\sqrt{13}\cos x^{\circ}\cos a^{\circ} \sqrt{13}\sin x^{\circ}\sin a^{\circ}$ or $\sqrt{13}\left(\cos x^{\circ}\cos a^{\circ} \sin x^{\circ}\sin a^{\circ}\right)$ is acceptable for \bullet^{1} and \bullet^{3} .
- 4. •² is not available for $k \cos x^\circ = 2$, $k \sin x^\circ = 3$, however •⁴ may still be gained. See Candidate F.
- 5. Accept $k \cos a^{\circ} = 2$, $-k \sin a^{\circ} = -3$ for \bullet^2 .
- 6. 3 is only available for a single value of k, k > 0.
- 7. 4 is not available for a value of a given in radians.
- 8. Accept values of a which round to 56.
- 9. Candidates may use any form of the wave function for \bullet^1 , \bullet^2 and \bullet^3 . However, \bullet^4 is only available if the wave is interpreted in the form $k\cos(x+a)^{\circ}$.
- 10. Evidence for \bullet^4 may not appear until part (b).

Commonly Observed Responses:

Candidate A		Candidate B	Candidate C
	● 1 ^	$k\cos x^{\circ}\cos a^{\circ} - k\sin x^{\circ}\sin a^{\circ}$	$\cos x^{\circ} \cos a^{\circ} - \sin x^{\circ} \sin a^{\circ}$
$\sqrt{13}\cos a^{\circ} = 2$		$\cos a^{\circ} = 2$	$\cos a^{\circ} = 2$
$\sqrt{13}\sin a^{\circ} = 3$	•² √ •³ √	$\sin a^{\circ} = 3 \qquad \bullet^{2} \mathbf{x}$	$\sin a^{\circ} = 3 \qquad \qquad \bullet^{2} \checkmark 2$
			$k = \sqrt{13}$
$\tan a^{\circ} = \frac{3}{2}$		$\tan a^{\circ} = \frac{3}{2}$ Not consistent	$\tan a^{\circ} = \frac{3}{2}$
$a = 56 \cdot 3$		$a = 56 \cdot 3$ with equations at \bullet^2 .	$a = 56 \cdot 3$
$\sqrt{13}\cos(x+56\cdot3)^{\circ}$	•⁴ ✓	$\sqrt{13}\cos(x+56\cdot3)^{\circ}$ • ³ • • ⁴ x	$\sqrt{13}\cos(x+56\cdot3)^{\circ} \bullet^4 \times$

Question	Gene	ric scheme	Ille	ustrative schem	e	Max mark
Candidate D - en $k \cos x^{\circ} \cos a^{\circ} - k$		Candidate E - errors $k \cos x^{\circ} \cos a^{\circ} - k \sin a$		Candidate F - $k \cos x^{\circ} \cos a^{\circ}$ -		
$k\cos a^{\circ} = 3$ $k\sin a^{\circ} = 2$	•² x	$k \cos a^{\circ} = 2$ $k \sin a^{\circ} = -3$	•² x	$k\cos x^{\circ} = 2$ $k\sin x^{\circ} = 3$	•² x	
$\tan a^{\circ} = \frac{2}{3}$		$\tan a^{\circ} = -\frac{3}{2}$		$\tan a^{\circ} = \frac{3}{2}$		
a = 33.7		$a = 303 \cdot 7$		$x = 56 \cdot 3$		
$\sqrt{13}\cos(x+33.7)$	•³ ✓ •⁴ ✓ 1	$\sqrt{13}\cos(x+303\cdot7)^{\circ}$	•³ ✓ •⁴ ✓ 1	$\sqrt{13}\cos(x+56)$	•3)° •3 •	· ′ 1
$k \cos A \cos B - k \sin A$ $k \cos A^{\circ} = 2$ $k \sin A^{\circ} = 3$ $\tan A^{\circ} = \frac{3}{2}$ $a = 56 \cdot 3$ Unclustage relat $\sqrt{13} \cos(x + 56 \cdot 3)$	\bullet^1 x \bullet^2 x ear at this e whether A es to a or to x .					
(b)	● ⁵ link to (a)		$\bullet^5 \sqrt{13} \cos $	$(x+56\cdot3\ldots)^{\circ}=$	•7	3
	•6 solve for $x+$	a	• ⁶ 33·69	.(393.69)	326 · 31	
	• 7 solve for x		•7 337 · 38 2		270	
Notes:			ı			
11. Do not penal	ise working whicl	n rounds to 34, 326, 39	94 leading to	270 and 337.		
Commonly Obse	rved Responses:					