5 201942 04 (a) Ung = Un 1 520194264 (a) Uny=aun+b a = 98.3, b = 30Unt = 98.3 Un +30 Un+1 = Un in the limit; = UL UL = 983 UL +30

(b) (i) a is between o and 1, so Unti tends to time

UL(1-98:3) = 30

 $U_{L}\left(\frac{2.7}{100}\right) = 30$

UL = 30×100 - 1100 mice

Question			Generic scheme	Illustrative scheme	Max mark
4.	(a)		$ullet^1$ state values of a and b	\bullet^1 $a = 0.973, b = 30$	1

Notes:

1. Accept $u_{n+1} = 0.973u_n + 30$ for •1.

Commonly Observed Responses:

(b)	(i)	•² communicate condition for limit to exist	\bullet^2 a limit exists as the recurrence relation is linear and $-1 < 0.973 < 1$	1			
	(ii)	 4 process limit and state estimated population 	•3 $L = 0.973L + 30$ or $L = \frac{30}{1 - 0.973}$ •4 1100	2			

Notes:

2. For \bullet^2 accept:

-1 < 0.973 < 1 or |0.973| < 1 or 0 < 0.973 < 1 with no further comment;

or statements such as "0.973 lies between -1 and 1";

or -1 < a < 1 (as a is previously defined).

3. •² is not available for:

 $-1 \le 0.973 \le 1$ or 0.973 < 1;

or statements such as "it is between -1 and 1"

4. Do not accept $L = \frac{b}{1-a}$ with no further working for \bullet^3 .

5. For L = 1100 with no working award \bullet^3 and \bullet^4 .

Commonly Observed Responses:

Candidate A - no rounding required

$$u_{n+1} = 0.97u_n + 30$$

●1 🗶

 ${\color{red} \textbf{Candidate B} - correct\ rounding} \\$

 $u_{n+1} = 0.027u_n + 30$

$$L = \frac{30}{1 - 0.97}$$

$$L = \frac{30}{1.00037}$$

•³ **√** 1

$$L = 1000$$

•⁴ ✓ 2

L = 0

•⁴ ✓ 1

•1 🗴

Candidate C - no valid limit

$$u_{n+1} = 2 \cdot 7u_n + 30$$

•1 **x**

A limit does not exist as 2.7 > 1

•² 🗴

$$L = \frac{30}{1 - 2 \cdot 7}$$

$$L = \mathbf{0}$$

•⁴ ×