(2)
$$\int (6\sqrt{x} - 4x^{-3} + 5) dx$$

$$= \int (6x^{1/2} - 4x^{-3} + 5) dx$$

$$= \frac{6 \times 3/2}{3/2} - \frac{4 \times \sqrt{2}}{-2} + 5 \times + C$$

$$= \frac{3}{3} + 2x^{2} + 6x + C$$

$$= \frac{3}{3}$$

$$= \frac{3}{4} \times \frac{3}{2} \times$$

Question			Generic scheme	Illustrative scheme	Max mark
2.			•1 express $6\sqrt{x}$ in integrable form	$\bullet^1 6x^{\frac{1}{2}}$	4
			•² integrate first term	$e^2 \frac{6x^{\frac{3}{2}}}{\frac{3}{2}}$	
			•³ integrate second term	$-3 \dots - \frac{4x^{-2}}{-2} \dots$	
			•4 complete integration	$-4 4x^{\frac{3}{2}} + 2x^{-2} + 5x + c$	

Notes:

- 1. \bullet^2 is only available for integrating a term with a fractional index.
- 2. All coefficients must be simplified at \bullet^4 stage for \bullet^4 to be awarded.
- 3. Do not penalise the appearance of an integral sign throughout.
- 4. Do not penalise the omission of '+c' at \bullet^2 and \bullet^3 .

Commonly Observed Responses:

Candidate A

$$\int \left(6x^{\frac{1}{2}} - 4x^{-3} + 5\right) dx$$

$$= \frac{6x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{4x^{-2}}{-2} + 5x + c$$

$$= \frac{12}{3}x^{\frac{3}{2}} + 2x^{-2} + 5x + c$$

$$= 4\sqrt{x^{3}} + \frac{2}{\sqrt{x^{2}}} + 5x + c$$
•4 x

• 4 cannot be awarded over two lines of working