(5) (1)
$$m_{cp} = \frac{13-12}{5-8}$$

$$ML = 3$$

$$y-13 = 3x-15$$

$$y = 3x - 2$$

$$y = 3 \times 0 - 2 = -2$$

.
$$M_{CT} = \left(\frac{8+0}{2}, \frac{12+(-2)}{2}\right) = \left(4, 5\right)$$

$$d_{MC} = \sqrt{(4-8)^2 + (5-12)^2}$$

$$= \sqrt{16 + 49}$$

$$(x-4)^2 + (y-5)^2 = 65$$

C 2019H2 GUS

(a) moding =
$$-\frac{1}{3}$$
, map = 3
For TP $\frac{4-13}{x-5} = 3$
 $y = 3x - 15$

(4) When
$$y=0$$
, $y=-2$
T is point $(0,-2)$

(c)
$$x^2 + y^2 + 2gx + 2fy + c = 0$$

 $25 + 169 + 10g + 26f + c = 0$
 $64 + 144 + 16g + 24f + c = 0$
 $0 + 4 + 0 - 4f + c = 0$

$$10g + 24f + C = -194$$

 $16g + 24f + C = -208$
 $-4f + C = -4$
 $C = 4f - 4$

$$\begin{cases} 10g + 26f + 4f - 4 = -194 \\ 16g + 24f + 4f - 4 = -208 \\ 10g + 30f = -190 - 1 \\ 16g + 28f = -204 - 2 \\ 80g + 240f = -190.8 = -1520 \end{cases}$$

$$80g + 140f = -1000 = -1000$$

 $100f = -500$

$$x^{2} + y^{2} - 8x - 10y + 24 = 0$$

Question		n	Generic scheme	Illustrative scheme	Max mark
15.	(a)		•¹ find gradient of radius	$\bullet^1 - \frac{1}{3}$	3
			•² state gradient of tangent	•² 3	
			•³ state equation of tangent	$\bullet^3 y = 3x - 2$	

Notes:

- 1. Do not accept $y = \frac{3}{1}x 2$ for •3.
- 2. \bullet^3 is only available as a consequence of trying to find and use a perpendicular gradient.
- 3. At \bullet ³ accept, y-3x+2=0 or any other rearrangement of the equation where the constant terms have been simplified.

Commonly Observed Responses:

	(b)	(i)	•4 find coordinates of T	•4 (0,-2)	1	
		(ii)	•5 find midpoint CT	• ⁵ (4,5)	3	
			•6 find radius of circle with diameter CT	•6 $\sqrt{65}$ stated or implied by •7		
			• ⁷ state equation of circle	•7 $(x-4)^2 + (y-5)^2 = 65$		

Notes:

- 4. Answers in part (b)(i) must be consistent with answers from part (a).
- 5. Accept x = 0, y = -2 for \bullet^4 .
- 6. $(x-4)^2 + (y-5)^2 = (\sqrt{65})^2$ does not gain •7.
- 7. \bullet ⁷ is not available to candidates who use a line other than CT as the diameter of the circle.

Commonly Observed Responses:

[END OF MARKING INSTRUCTIONS]