$$= \chi^{3} - 8\chi^{2} + 11\chi + C \qquad (7,0)$$

$$= 7^{3} - 8(7)^{2} + 11(7) + C$$

0 = 343 - 392 + 77 + C

 $f(x) = \int (3x^2 - 16x + 11) dx$

$$0 = 28 + C$$

 $-28 = C$
 $\int_{0}^{\infty} = x^{3} - 8x^{2} + 11x - 28$

Question		n	Generic scheme	Illustrative scheme	Max mark
13.			•¹ interpret information given	• $f'(x) = 3x^2 - 16x + 11$ or	5
				$f(x) = \int (3x^2 - 16x + 11) dx$	
			•² integrate any two terms	$e^2 \operatorname{eg} \frac{3x^3}{3} - \frac{16x^2}{2} \dots$	
			•³ complete integration	$\bullet^3 \dots + 11x + c$	
			•4 interpret information given and substitute	$\bullet^4 0 = 7^3 - 8 \times 7^2 + 11 \times 7 + c$	
			• process for c and state expression for $f(x)$	•5 $f(x) = x^3 - 8x^2 + 11x - 28$	

Notes:

- 1. For candidates who make no attempt to integrate to find f(x) award 0/5.
- 2. Do not penalise the omission of f(x) or dx or the appearance of +c at \bullet^1 .
- 3. If any two terms have been integrated correctly \bullet^1 may be implied by \bullet^2 .
- 4. For candidates who omit +c, only \bullet^1 and \bullet^2 are available.
- 5. For candidates who differentiate any term, $\bullet^3 \bullet^4$ and \bullet^5 are not available.
- 6. Candidates must attempt to integrate both terms containing \mathcal{X} for \bullet^4 and \bullet^5 to be available. See Candidate B.
- 7. Accept $y=x^3-8x^2+11x-28$ at \bullet^5 since y=f(x) is defined in the question.
- 8. Candidates must simplify coefficients in <u>their</u> final line of working for the last mark available in that line of working to be awarded.

Commonly Observed Responses:

Candidate A - incomplete sul	ostitution	Candidate B - partial integration		
$f(x) = x^3 - 8x^2 + 11x + c$	•1 √ •2 √ •3 √	$f(x) = x^3 - 8x^2 + 11 + c$	•¹ ✓ •² ✓ •³ x	
$f(x) = 7^3 - 8 \times 7^2 + 11 \times 7 + c$	• ⁴ ^	$0 = 7^3 - 8 \times 7^2 + 11 + c$	● ⁴ ✓ 1	
c=-28		c = 38	-	
$f(x) = x^3 - 8x^2 + 11x - 28$	● ⁵ ✓ 1	$f(x) = x^3 - 8x^2 + 49$	•5 ✓ 1	