(12) (e)
$$f(5-x)$$
 (b) Undefined when:
 $5-x \le 0$

 $= \frac{1}{\sqrt{5-x}}$

Q	uestion	Generic scheme	Illustrative scheme	Max mark
12.		Method 1 •1 state linear equation	Method 1 $ \log_4 y = 3x - 1 $	5
		•² introduce logs	$\log_4 y = 3x \log_4 4 - \log_4 4$	
		•³ use laws of logs	$ \bullet^3 \log_4 y = \log_4 4^{3x} - \log_4 4 $	
		• ⁴ use laws of logs	•4 $\log_4 y = \log_4 \left(\frac{4^{3x}}{4}\right)$ or $\log_4 y = \log_4 4^{-1} 4^{3x}$	
		$ullet^5$ state a and b	$\bullet^5 a = \frac{1}{4}, \ b = 64$	
		Method 2 • state linear equation	Method 2	5
		•² convert to exponential form	$y = 4^{3x-1}$	
		•³ use laws of indices	• $y = 4^{3x-1}$ • $y = 4^{-1}4^{3x}$	
		• ⁴ state <i>a</i>	$\bullet^4 a = \frac{1}{4}$	
		● ⁵ state <i>b</i>	•5 <i>b</i> = 64	
		Method 3	Method 3 The equations at •¹, •², •³ and •⁴ must be stated explicitly.	5
		•1 introduce logs to $y=ab^x$		
		•² use laws of logs	$ \log_4 y = \log_4 a + x \log_4 b $	
		•³ interpret intercept	$-1 = \log_4 a$	
		•4 interpret gradient	\bullet 3= $\log_4 b$	
		$ullet^5$ state a and b	•5 $a = \frac{1}{4}, b = 64$	

Question		Generic scheme	Illustrative scheme	Max mark
		Method 4 ●1 interpret point on log graph	Method 4 • $x=3$ and $\log_4 y=8$	5
		•² convert from log to exponential form	• $x = 3$ and $y = 4^8$	
		•³ interpret point and convert	•3 $x = 0$ and $\log_4 y = -1$ $x = 0$ and $y = 4^{-1}$	
		• substitute into $y=ab^x$ and evaluate a	$\bullet^4 4^{-1} = ab^0 \Rightarrow a = \frac{1}{4}$	
		• substitute other point into $y=ab^x$ and evaluate b	$\bullet^5 4^8 = \frac{1}{4}b^3 \Rightarrow b = 64$	

Notes:

- 1. In any method, marks may only be awarded within a valid strategy using $y=ab^x$.
- 2. Accept $y = \frac{1}{4} \cdot 64^x$ for •5.
- 3. Markers must identify the method which best matches the candidates approach; they must not mix and match between methods.
- 4. Penalise the omission of base 4 at most once in any method.
- 5. Do not accept $a = 4^{-1}$.

Commonly Observed Responses: