P201942010 $Q = 3x^{3} + x^{2} - 2x - 2$ Try (x-1): R = 0So(x-1) un enfector (x+3)(x-1)(3x^{2}+4x+2) | Question | | | Generic scheme | Illustrative scheme | Max
mark | |----------|-----|--|---|---|-------------| | 10. | (a) | | •¹ use -3 in synthetic division or in evaluation of quartic | or $\frac{3 \times (-3)^4 + 10 \times (-3)^3 + (-3)^2}{-8 \times (-3) - 6}$ | 2 | | | | | •² complete division/evaluation and interpret result | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | ## Notes: - 1. Communication at \bullet^2 must be consistent with working at that stage ie a candidate's working must arrive legitimately at 0 before \bullet^2 can be awarded. - 2. Accept any of the following for •²: - 'f(-3)=0 so (x+3) is a factor' - 'since remainder = 0, it is a factor' - the '0' from any method linked to the word 'factor' by 'so', 'hence', \therefore , \rightarrow , \Rightarrow etc. - 3. Do not accept any of the following for \bullet^2 : - double underlining the '0' or boxing the '0' without comment - 'x = -3 is a factor', '... is a root' - the word 'factor' only, with no link. ## **Commonly Observed Responses:** | Question | Generic scheme | Illustrative scheme | Max
mark | |----------|---|---|-------------| | (b) | •³ identify cubic and attempt to factorise •⁴ find second factor | 3 1 -2 -2 1 3 1 -2 -2 3 4 2 3 4 2 0 | 5 | | | • identify quadratic • evaluate discriminant • interpret discriminant and factorise fully | leading to $(x-1)$ • 5 $3x^2 + 4x + 2$ • 6 -8 • 7 since $-8 < 0$, quadratic has no (real) factors leading to $(x+3)(x-1)(3x^2 + 4x + 2)$ | | ## Notes: - 4. Candidates who arrive at $(x+3)(x-1)(3x^2+4x+2)$ by using algebraic long division or by inspection gain \bullet^3 , \bullet^4 and \bullet^5 . - 5. Evidence for •6 may appear in the quadratic formula. - 6. Accept '-8 < 0 so no real roots' with the fully factorised quartic for \bullet^7 : - 7. Do not accept any of the following for \bullet ⁷: - $(x+3)(x-1)(3x^2+4x+2)$ does not factorise - $(x+3)(x-1)(\dots \dots)(\dots \dots)$ cannot factorise further. - 8. Accept $(x+3)(x-1)3x^2+4x+2$, with a valid reason for \bullet^7 . - 9. Where the quadratic factor obtained at \bullet^5 can be factorised, \bullet^6 and \bullet^7 are not available. | Commonly Observed Responses: | | | | | | | | | | |------------------------------|----------------------------------|-------------------------|------------|--|--|--|--|--|--| | Candidate A | | Candidate B | | | | | | | | | $(x+3)(x-1)(3x^2+4x+2)$ | •5 ✓ | $(x+3)(x-1)(3x^2+4x+2)$ | ●5 ✓ | | | | | | | | $b^2 - 4ac = 16 - 24 < 0$ | 6 ∧ | $b^2 - 4ac < 0$ | 6 ∧ | | | | | | | | so does not factorise | • ⁷ ✓ 1 | so does not factorise | •7 ∧ | | | | | | |