(1) (a)
$$M_{AC} = \left(\frac{-5+(-3)}{2}, \frac{(-12)+6}{2}\right) = \left(-4, -3\right)$$

$$M_{BM} = \frac{-3 - (-8)}{-4 - 11} = \frac{5}{-15} = -\frac{1}{3}$$

$$y + 3 = -\frac{1}{3}(x + 4)$$

$$3y + 9 = -1(x + 4)$$

$$3y + 9 = -x - 4$$

$$3y = -x - 13$$

(b)
$$m_{BC} = \frac{6 - (-8)}{-3 - 11} = \frac{14}{-14} = -1$$

$$wT = 1$$

$$y + 12 = 1 (x + 5)$$

$$(C) \quad 3y + x = -13$$

$$y - x = -7$$

$$4y = -20$$

$$y = -5$$

$$-5 - x = -7$$

$$-70 = -7$$

$$-\infty = -\infty$$

$$ac = -2 \qquad (a, -5)$$

$$ac = 2$$

Question		n	Generic scheme	Illustrative scheme	Max mark
1.	(a)		•¹ calculate the midpoint of AC	•1 (-4, -3)	3
			•² calculate the gradient of BD	$ \bullet^2 = \frac{1}{3}$	
			•³ determine equation of BD	• 3 $3y = -x - 13$	

Notes:

- 1. \bullet^2 is only available to candidates who use a midpoint to find a gradient.
- 2. \bullet ³ is only available as a consequence of using the midpoint of AC and the point B.
- 3. At ●³ accept any arrangement of a candidate's equation where constant terms have been simplified.
- 4. \bullet ³ is not available as a consequence of using a perpendicular gradient.

Commonly Observed Responses:					
Candidate A - Perpendicular Bised	ctor of AC	Candidate B - Altitude through B			
$Midpoint_{AC}\left(-4,-3\right)$	•1 ✓	$m_{AC} = 9$	● 1 ∧		
$m_{\rm AC} = 9 \Rightarrow m_{\perp} = -\frac{1}{9}$	•² x	$m_{\perp} = -\frac{1}{9}$	•² x		
9y + x + 31 = 0	•³ ✓ 2	9y + x = -61	•³ ✓ 2		
For other perpendicular bisectors	award 0/3				
Candidate C - Median through A		Candidate D - Median through C			
$Midpoint_{BC}(4,-1)$	•¹ x	$Midpoint_{AB}\big(3,-10\big)$	•1 x		
$m_{\text{AM}} = \frac{11}{9}$	● ² ✓ 1	$m_{CM} = -\frac{8}{3}$	• ²		
9y - 11x + 53 = 0	•³ ✓ 2	3y + 8x + 6 = 0	•³ ✓ 2		

Question		Generic scheme	Illustrative scheme	Max mark
(b)		•4 calculate gradient of BC	•4 —1	3
		•5 use property of perpendicular lines	• ⁵ 1	
		•6 determine equation of AE	$\bullet^6 y = x - 7$	

Notes:

- 5. 6 is only available to candidates who find and use a perpendicular gradient.
- 6. At \bullet^6 accept any arrangement of a candidate's equation where constant terms have been simplified.

Commonly Observed Responses:

Candidate E

Correct gradient from incorrect substitution

$$m_{\rm BC} = \frac{-3 - 11}{6 + 8} = -1$$

•4 🗶

$$m_{AE} = 1$$

●5 **✓** 1

$$y = x - 7$$

•6 **√**

(c)	• 7 find x or y coordinate		• $x = 2 \text{ or } y = -5$	2
	•8 find remaining coordinate of the point of intersection	e	•8 $y = -5 \text{ or } x = 2$	

Notes:

7. For (2,-5) with no working, award 0/2.

Commonly Observed Responses: