(8) (a)
$$\int_{-1}^{2} \left(2x^{2} + 2x + 3 - (2x^{2} + x + 1) \right) dx$$
$$\int_{-1}^{2} \left(-x^{2} + x + 2 \right) dx$$

(b)
$$\int_{-1}^{2} (-x^{2} + x + \lambda) dx$$

$$= \left[-\frac{2x^{3}}{3} + \frac{x^{2}}{3} + 2x \right]_{-1}^{2}$$

$$= \left(-\frac{2^{3}}{3} + \frac{2^{3}}{3} + 2(2) \right) - \left(-\frac{(1)^{3}}{3} + \frac{(1)^{3}}{3} + 2(1) \right)$$

$$= \left(-\frac{8}{3} + 2 + 4 \right) - \left(\frac{1}{3} + \frac{1}{3} - 2 \right)$$

$$= \left(-\frac{2^{3}}{3} + 6 \right) - \left(\frac{5}{6} - 2 \right)$$

$$= 3^{\frac{1}{6}} + 1^{\frac{1}{6}}$$

$$= 3^{\frac{1}{6}} + 1^{\frac{1}{6}}$$

Question		on	Generic scheme	Illustrative scheme	Max mark
8.	(a)		•¹ state integral	$\int_{-1}^{2} \left(-x^2 + x + 2\right) dx$	1

Notes:

- 1. Evidence for •¹ may be appear in part (b). However, where candidates make no attempt to answer part (a), •¹ is not available.
- 2. \bullet^1 is not available to candidates who omit the limits or 'dx'.
- 3. •¹ is awarded for a candidates final expression for the area. However, accept $\int_{-1}^{2} \left(\left(x^2 + 2x + 3 \right) \left(2x^2 + x + 1 \right) \right) dx \text{ or } \int_{-1}^{2} \left(x^2 + 2x + 3 \right) dx \int_{-1}^{2} \left(2x^2 + x + 1 \right) dx \text{ without further working.}$
- 4. For $\int_{-1}^{2} x^2 + 2x + 3 2x^2 + x + 1 dx$, see Candidates A and B.

Commonly Observed Responses:

Candidate A	Candidate B		
(a) $\int_{-1}^{2} x^2 + 2x + 3 - 2x^2 + x + 1 dx$	(a) $\int_{-1}^{2} x^2 + 2x + 3 - 2x^2 + x + 1 dx$		
$\int_{-1}^{2} \left(-x^2 + x + 2\right) dx \qquad \bullet^{1} \checkmark$	(b) $\int_{-1}^{2} (-x^2 + x + 2) dx$ •1		
Treat missing brackets as bad form as subsequent working is correct.			
Candidate C - error in simplification			
(a) $\int_{-1}^{2} (x^2 + 2x + 3) - (2x^2 + x + 1) dx$			
$\int_{0}^{2} x^{2} + x + 2 dx$			

Question		Generic scheme	Illustrative scheme	Max mark
(b)		•² integrate expression from (a)	$ \bullet^2 - \frac{1}{3}x^3 + \frac{1}{2}x^2 + 2x$	3
		•³ substitute limits	$\bullet^3 \left(-\frac{1}{3}(2)^3 + \frac{1}{2}(2)^2 + 2(2)\right)$	
			$-\left(-\frac{1}{3}(-1)^3 + \frac{1}{2}(-1)^2 + 2(-1)\right)$	
		• ⁴ evaluate area	•4 9/2	

Notes:

- 5. Where a candidate differentiates one or more terms at \bullet^2 then \bullet^2 , \bullet^3 and \bullet^4 are unavailable.
- 6. Do not penalise the inclusion of +c or the continued appearance of the integral sign.
- 7. Candidates who substitute limits without integrating any term do not gain •3 or •4.
- 8. Where a candidate arrives at a negative value at \bullet^4 see Candidates D and E.

Commonly Observed Responses:

Candidate D		Candidate E	
$\int_{-1}^{2} (x^2 - x - 2) dx$		$\int_{2}^{-1} \left(-x^2 + x + 2\right) dx$	
\vdots $=-\frac{9}{2}=\frac{9}{2}$	4 k	: 9 cannot be possible so units?	•4 ½
	•••	$=-\frac{9}{2}$ cannot be negative so $\frac{9}{2}$ units ²	• • •
However		However	
$=-\frac{9}{2}$, hence area is $\frac{9}{2}$.	•⁴ ✓	$=-\frac{9}{2}$, hence area is $\frac{9}{2}$.	•⁴ ✓
Candidate F - not using expression	from (a)		
(a) $\int_{-1}^{2} x^2 + 2x + 3 dx$	•1 x		
(b) $\int_{-1}^{2} (x^2 + 2x + 3) - (2x^2 + x + 1) dx$			
$= \left[-\frac{1}{3}x^3 + \frac{1}{2}x^2 + 2x \right]_{-1}^2$	•² <mark>✓ 2</mark>		
$= \left(-\frac{1}{3}(2)^3 + \frac{1}{2}(2)^2 + 2(2)\right)$			
$-\left(-\frac{1}{3}(-1)^3 + \frac{1}{2}(-1)^2 + 2(-1)^3\right)$) •3 <u>~ 1</u>		
$=\frac{9}{2}$	• ⁴ 1		