$$9 m = \tan 30^{\circ}$$

$$= \frac{1}{\sqrt{3}}$$

$$m_{\perp} = -\sqrt{3}$$
 $y+4=-\sqrt{3}(x-0)$

$$y + 4 = -\sqrt{3}(x - 0)$$

 $y + 4 = -\sqrt{3}x$
 $y = -\sqrt{3}x - 4$

Question		n	Generic scheme	Illustrative scheme	Max mark
7.			Method 1	Method 1	4
			• use $m = \tan \theta$	$\bullet^1 m = \tan 30^\circ$	
			$ullet^2$ find gradient of L		
			•³ use property of perpendicular lines	$\bullet^3 -\sqrt{3}$	
			•4 determine equation of line	$\bullet^4 y = -\sqrt{3}x - 4$	
			Method 2	Method 2	
			•¹ find angle perpendicular line makes with the positive direction of the x-axis.	• 1 $30^{\circ} + 90^{\circ} = 120^{\circ}$ stated or implied by • 2	
			• use $m = \tan \theta$	$\bullet^2 m = \tan 120^\circ$	
			•³ find gradient of perpendicular line	$\bullet^3 -\sqrt{3}$	
			•4 determine equation of line	$\bullet^4 y = -\sqrt{3}x - 4$	

Notes:

- 1. In Method 1, where candidates make no reference to a trigonometric ratio or use an incorrect trigonometric ratio, \bullet^1 and \bullet^2 are unavailable. In Method 2, where candidates use an incorrect trigonometric ratio \bullet^2 and \bullet^3 are unavailable.
- 2. Accept $y + 4 = -\sqrt{3}(x)$ at •4, but do not accept $y + 4 = -\sqrt{3}(x 0)$.
- 3. In Method 1, \bullet^4 is only available if the candidate has attempted to use a perpendicular gradient.

Commonly Observed Responses: Candidate A $m = \frac{1}{\sqrt{3}} \text{ (with or without diagram)} \quad \bullet^1 \land \bullet^2 \checkmark 2$ $m_{\perp} = -\sqrt{3} \quad \bullet^3 \checkmark 1$ Candidate B $m = \tan \theta \text{ (with or without diagram)} \bullet^1 \land m = \frac{1}{\sqrt{3}} \quad \bullet^2 \checkmark 1$ Candidate C $m = \tan \theta = 30 \quad \bullet^1 \times \qquad m = \tan^{-1} 30 \quad \bullet^1 \times m = \frac{1}{\sqrt{3}} \quad \bullet^2 \checkmark 1$ Candidate E $\tan 30 = \frac{1}{\sqrt{3}} \quad \bullet^1 \land m = -\sqrt{3} \quad \bullet^2 \checkmark 1 \quad \bullet^3 \checkmark 1$