(a) $\sin 2x + 6\cos x = 0$

2sinxcosx + 6cosx = 0

2 cusic (sinic + 3) = 0

2005)C=0 Sinc+3=0

cosic = 0 sinc = -3

 $\gamma C = 90^{\circ}, 270^{\circ}$ $\gamma C = No solutions$

(b) Sin 4x + 6 cos 2x = 0

 $2\pi c = 90^{\circ}, 270^{\circ}, 450^{\circ}, 630^{\circ}$ $x = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$

Question			Generic scheme	Illustrative scheme	Max mark
15.	(a)		•¹ substitute appropriate double angle formula	$\bullet^1 \ 2\sin x^\circ \cos x^\circ + 6\cos x^\circ = 0$	4
			•² factorise	$\bullet^2 \ 2\cos x^\circ (\sin x^\circ + 3) = 0$	
			• 3 solve for $\cos x^\circ$ and $\sin x^\circ$	$\bullet^3 \cos x^\circ = 0 \qquad \sin x^\circ = -3$	
			• ⁴ solve for <i>x</i>	• 4 $x = 90$, 270 'no solutions'	

Notes:

- 1. Do not penalise the absence of '=0' at \bullet ¹ and \bullet ².
- 2. Do not penalise the absence of '2' as a common factor at \bullet^2 .
- 3. Do not penalise the omission of degree signs.
- 4. Candidates who leave their answer in radians do not gain •⁴ (if marking horizontally) or •³ (if marking vertically).
- 5. \bullet^4 is only available if one of the equations at \bullet^3 has no solution.
- 6. Accept $\sin x^{\circ} = 3$ at \bullet^4 .

Commonly Observed Responses:

Notes:

Commonly Observed Responses: