(b)
$$\log_{2}(7\pi c - 2) - \log_{2} 3 = 5$$

$$\log_{2}(\frac{7x - 2}{3}) = 5$$

$$\frac{7x - 2}{3} = 2^{5}$$

$$\frac{7x - 2}{3} = 32$$

$$\frac{7x - 2}{3} = 96$$

$$\frac{7x - 2}{3} = 98$$

$$\frac{7x - 2}{3} = 14$$

Question		n	Generic scheme	Illustrative scheme	Max mark
14.	(a)		•1 apply $m \log_n x = \log_n x^m$	\bullet^1 $\log_{10} 5^2$ stated or implied by \bullet^2	3
			• apply $\log_a x + \log_a y = \log_a xy$	• $\log_{10}(4\times5^2)$	
			•³ evaluate logarithm	•³ 2	

Notes:

- 1. Each line of working must be equivalent to the line above within a valid strategy, however see Candidate A.
- 2. Do not penalise the omission of the base of the logarithm at \bullet^1 or \bullet^2 .
- 3. Correct answer with no working, award 0/3.

Commonly Observed Responses:				
Candidate A				
$2\log_{10}(4\times5)$	•² x			
$2\log_{10}(20)$				
$\log_{10}\left(20\right)^2$	•1 1 •3 ^			

Question	Generic scheme	Illustrative scheme	Max mark
(b)	Method 1	Method 1	3
	•4 apply $\log_a x - \log_a y = \log_a \frac{x}{y}$	$\bullet^4 \log_2 \frac{7x-2}{3} = \dots$	
	•5 express in exponential form		
	\bullet^6 solve for x	• ⁶ 14	
	Method 2	Method 2	
	•4 apply $m \log_n x = \log_n x^m$	$\bullet^4 \dots = \log_2 2^5$	
	• ⁵ simplify	•5 eg $\log_2 \frac{7x-2}{3} = \dots$ or $\log_2 (7x-2) = \log_2 (3 \times 2^5)$	
	•6 solve for x	• ⁶ 14	

Notes:

4. \bullet^6 is only awarded if each line of working is equivalent to the line above within a valid strategy.

Commonly Observed Responses:							
Candidate A - invalid working lead	ing to solution	Candidate B - invalid working leading to solution					
$\log_2 \frac{7x - 2}{3} = \log_2 5^2$	• ⁴ ✓ • ⁵ 🗴	$\log_2 \frac{7x-2}{3} = \log_2 5 \times 2$	•4 √ •5 x				
x = 11	• ⁶ ✓ 2	$x = \frac{32}{7}$	• ⁶ ✓ 2				
Candidate C		Candidate D					
$\log_2\left(\frac{7x-2}{3}\right) = 5\log_2 2$	•5 ✓	$\log_2(7x-2) - \log_2 3 = \log_2 2^5$	•⁴ ✓				
$\log_2 \frac{7x}{3} - \frac{2}{3} = \log_2 2^5$	•⁴ ✓	$\log_2\left(\frac{7x-2}{3}\right) = \log_2 25$	•5 ✓				