
2025 CpSc H Q8
Section: Software Design & Development

Topic: Implementation (Data Types & Structures)

Question Summary
An online reaction‑time game stores player attempts with fields: name,
e‑mail, attemptID, time. Tasks cover record definition, array of records,
finding the fastest time, why numPlays is needed, converting a binary
fraction to floating‑point (16‑bit mantissa incl. sign, 8‑bit exponent), and
creating attemptID from e‑mail (characters before ‘@’) with numPlays.

(a)(i) Define a suitable record structure
SQA‑style pseudocode
TYPE PlayerAttempt
name : STRING
email : STRING
attemptID : STRING
reactionTime : REAL // seconds to the nearest thousandth
END TYPE

(a)(ii) Declare an array variable for up to 10 000
attempts

DECLARE attempts : ARRAY[0..9999] OF PlayerAttempt
DECLARE numPlays : INTEGER INITIALLY 0 // number of attempts
recorded today

(b)(i) Code to find the fastest time (uses (a)
declarations)

IF numPlays = 0 THEN
OUTPUT "No plays today"
ELSE
SET fastest ← attempts[0].reactionTime



FOR index FROM 1 TO numPlays−1 DO
IF attempts[index].reactionTime < fastest THEN
SET fastest ← attempts[index].reactionTime
END IF
END FOR
OUTPUT "Fastest time today: ", fastest
END IF

(b)(ii) Why numPlays is needed
The array has a capacity of 10 000, but only the first numPlays elements
contain valid data for today. Traversing all 10 000 would waste time and
may read uninitialised entries. Using numPlays restricts the loop to
exactly the number of actual attempts recorded.

(c) Convert 0.001₂ (i.e. 0.125₁₀) to floating‑point
Normalise with the SQA convention: mantissa is 16 bits (including sign)
with the binary point immediately after the sign bit. A normalised
positive mantissa therefore starts as 0.1… and the exponent shifts the
point.

• 0.001₂ = 0.125₁₀.

• Write 0.001₂ as 0.1 × 2⁻² (since 0.1₂ = 0.5 and 0.5 × 2⁻² = 0.125).

• Therefore: sign = 0 (positive); mantissa = 0.1 followed by zeros to 16
bits (incl. sign); exponent = −2.

Bit patterns depend on the specific course convention for exponent
encoding:

• Two’s complement 8‑bit exponent: −2 = 11111110.

• Excess‑128 (bias) exponent: −2 + 128 = 126 = 01111110.

For mantissa (16 bits including sign): sign=0; then binary point; leading
1 followed by zeros. A valid 16‑bit mantissa field is 0 1000 0000 0000
000 (sign bit ‘0’ then ‘1’ then zeros).

In assessments, you’ll receive full marks for the correct normalisation
and a consistent bit representation that matches your class convention



(either two’s‑complement exponent or excess‑bias).

(d) Build attemptID using characters before ‘@’ and
numPlays

FUNCTION findCharIndex(value : STRING, character : STRING)
RETURNS INTEGER
DECLARE positionChar : INTEGER INITIALLY −1
FOR index FROM 0 TO length(value)−1 DO
IF value[index] = character THEN
SET positionChar ← index
END IF
END FOR
RETURN positionChar
END FUNCTION

// Line 70: assign position of '@' in email
SET position ← findCharIndex(email, "@")

// Line 71: characters before '@' concatenated with numPlays
IF position ≠ −1 THEN
SET localPart ← substring(email, 0, position)
SET attemptID ← localPart & toString(numPlays)
ELSE
// No '@' found — fallback or error handling
SET attemptID ← email & toString(numPlays)
END IF

Final Answer
• (a) Record and array declarations as shown.

• (b)(i) Single pass (0..numPlays−1) to find minimum reaction time; (ii)
numPlays prevents scanning unused entries.



• (c) 0.001₂ normalises to 0.1 × 2⁻²; sign=0; mantissa begins 0.1…;
exponent = −2 (encode per your course convention).

• (d) Use findCharIndex to get position of ‘@’; attemptID is the local‑part
concatenated with numPlays.

Revision Tips
• Records group related fields; an array of records stores many
attempts.

• Always track a count (numPlays) to avoid scanning unused array
elements.

• For floating‑point: normalise mantissa to start 0.1… (SQA convention)
and encode the exponent consistently.

• String operations with indices (find, substring) are typical 1–2 mark
tasks — write them clearly.




