
2025 CpSc H Q3
Section: Software Design & Development

Topic: Implementation (Algorithm Specification)

Question Summary
Design an algorithm that counts the number of upper‑case and
lower‑case letters in a given string variable sentence. Use ASCII ranges:
upper‑case 65–90, lower‑case 97–122. For the example input “To be or
not to be?”, the expected output is: Upper case = 1, Lower case = 12.

Worked Solution
Idea: Traverse each character of sentence. Use the ASCII code to decide
whether to increment the upper‑case or lower‑case counter; ignore any
other character (spaces, punctuation, digits).

Pseudocode (structured English)

SET upperCount ← 0

SET lowerCount ← 0

FOR each character ch IN sentence DO

SET code ← ASCII code of ch

IF 65 ≤ code ≤ 90 THEN

SET upperCount ← upperCount + 1

ELSE IF 97 ≤ code ≤ 122 THEN

SET lowerCount ← lowerCount + 1

END IF

END FOR

OUTPUT "Upper case: ", upperCount

OUTPUT "Lower case: ", lowerCount

Trace on the example



Input: “To be or not to be?” Letters encountered =
T,o,b,e,o,r,n,o,t,t,o,b,e → upperCount = 1 (the ‘T’), lowerCount = 12.
Spaces and ‘?’ are ignored.

Notes & Pitfalls
• Only ASCII letters are counted. Symbols, punctuation, spaces and
digits must be ignored (no counter change).

• Using ASCII ranges avoids locale issues — stick to 65–90 for ‘A’..‘Z’
and 97–122 for ‘a’..‘z’.

• If your language offers isUpper/isLower, using those is also acceptable
— but this solution matches the question’s ASCII guidance.

Final Answer
Algorithm above (structured English). For input “To be or not to be?” the
program outputs: Upper case: 1 and Lower case: 12.

Revision Tips
• ASCII checkpoints: 65–90 = ‘A’..‘Z’; 97–122 = ‘a’..‘z’.

• When a question asks for a design, write clear, language‑neutral steps
(no specific syntax required).

• Show that you ignore non‑letters; an explicit ‘ELSE do nothing’ earns
clarity marks.

• Time complexity is O(n) for n characters — one pass is ideal.




