2025 CpSc H Q3

Section: Software Designh & Development

Topic: Implementation (Algorithm Specification)

Question Summary

Design an algorithm that counts the number of upper-case and
lower-case letters in a given string variable sentence. Use ASCII ranges:
upper-case 65-90, lower-case 97-122. For the example input “To be or
not to be?”, the expected output is: Upper case = 1, Lower case = 12.

Worked Solution

Idea: Traverse each character of sentence. Use the ASCII code to decide
whether to increment the upper-case or lower-case counter; ignore any
other character (spaces, punctuation, digits).

Pseudocode (structured English)
SET upperCount « 0

SET lowerCount < 0

FOR each character ch IN sentence DO
SET code « ASCII code of ch

IF 65 = code = 90 THEN

SET upperCount « upperCount + 1
ELSE IF 97 = code = 122 THEN

SET lowerCount « lowerCount + 1
END IF

END FOR

OUTPUT "Upper case: ", upperCount

OUTPUT "Lower case: ", lowerCount

Trace on the example



Input: “To be or not to be?” Letters encountered =
T,0,b,e,0,r,n,0,t,t,0,b,e = upperCount = 1 (the ‘T’), lowerCount = 12.
Spaces and ‘?’ are ignored.

Notes & Pitfalls

* Only ASCII letters are counted. Symbols, punctuation, spaces and
digits must be ignored (no counter change).

» Using ASCII ranges avoids locale issues — stick to 65-90 for ‘A’..'Z’
and 97-122 for ‘a’..’z’.

* If your language offers isUpper/isLower, using those is also acceptable
— but this solution matches the question’s ASCII guidance.

Final Answer

Algorithm above (structured English). For input “To be or not to be?” the
program outputs: Upper case: 1 and Lower case: 12.

Revision Tips
» ASCII checkpoints: 65-90 = ‘A’.."Z’; 97-122 = ‘a’..'Z".

 When a question asks for a design, write clear, language-neutral steps
(no specific syntax required).

* Show that you ignore non-letters; an explicit ‘ELSE do nothing’ earns
clarity marks.

* Time complexity is O(n) for n characters — one pass is ideal.



G

/

Input sentence /

v

For each character
ch in sentence

Yes ASCll(ch) No
l 65-90
A4
upperCount - lowerCount -
upperCount + upperCount +1

!

¢

Output "Upper case",
upperCount

"Lower case:",
lowerCount




