2024 CpSc Q14

Section: Database Design and Development

Topic: SQL — Joins, GROUP BY, Aggregates, Subqueries

Question Summary

(a) Select bookings for pupils with instructors where
hourlyRate > 35, joining Instructor, Pupil and Booking
appropriately.

(b) (i) Produce a totals report grouped by town and sorted
by town and count.

(b) (ii) Explain why GROUP BY town is required.

(c) Find the average hourly rate for instructors whose day
off is Saturday or Sunday; include an alias.

(d) Find the instructor(s) with the minimum (cheapest)
hourly rate using a subquery (or a saved query used within
another).

Worked Solution

(a) Join the three tables on their keys and apply the rate
filter. Using equi-joins:

SELECT *

FROM Instructor, Pupil, Booking

WHERE hourlyRate > 35

AND Instructor.instructorID = Booking.instructorID

AND Booking.pupilRef = Pupil.pupilRef;

Note: A NATURAL JOIN or explicit INNER JOIN ... ON ... gets
equivalent credit.



(b)(i) ‘Totals” implies grouping and counting per town with a
doubly sorted output:

SELECT town, COUNT(*) AS [Number Per Town]

FROM Pupil

GROUP BY town

ORDER BY town ASC, [Number Per Town] ASC;

(b)(ii) GROUP BY town is required because the SELECT
includes a non-aggregate field (town) and we need one
output row per town; grouping produces one result for each
town.

(c) Compute the average hourly rate, using an alias, and
restrict to weekend days off:

SELECT AVG(hourlyRate) AS [Average Hourly Rate]
FROM Instructor

WHERE dayOff = 'Saturday' OR dayOff = 'Sunday’;
Alternative pattern: WHERE dayOff LIKE 'S%'.

(d) Use a subquery to locate the minimum hourlyRate, then
select the instructor(s) who match it:
SELECT *
FROM Instructor
WHERE hourlyRate = (
SELECT MIN(hourlyRate) FROM Instructor
);
Equivalent: first query to find MIN, then reference that
query (or a saved view) in a second query.

Final Answer

Final Answer
(a) Equi-join (or natural/INNER JOIN) across



Instructor-Booking-Pupil with condition hourlyRate > 35,
(b)(i) SELECT town, COUNT(*) AS [Number Per Town] FROM
Pupil GROUP BY town ORDER BY town, [Number Per Town];
(b)(ii) GROUP BY town ensures one result row per town
since town is non-aggregate.

(c) SELECT AVG(hourlyRate) AS [Average Hourly Rate]
FROM Instructor WHERE dayOff='Saturday' OR
dayOff="'Sunday’;

(d) SELECT * FROM Instructor WHERE hourlyRate = (SELECT
MIN(hourlyRate) FROM Instructor);

Revision Tips

« When non-aggregate fields appear in SELECT with
aggregates, they must be listed in GROUP BY.

e Alias calculated columns for easier ORDER BY, e.g.
[Number Per Town].

» Prefer explicit JOIN ... ON ... for clarity, but older
equi-join notation is acceptable.

* Subqueries are ideal for ‘cheapest’, ‘highest’, or ‘latest’
queries that compare against an aggregate.

Exam Alignment

Exam Alignment

Matches SQA 2024 Ml for Q14: (a) correct tables and joins
with hourlyRate > 35; (b)(i) totals with doubly sorted
output; (b)(ii) GROUP BY justification; (c) AVG on hourlyRate
with alias and weekend criteria; (d) MIN via subquery or
saved query.



