MARKS DO NOT WRITE IN THIS MARGIN

3

14. A driving school uses a relational database to store details of driving instructors, pupils and bookings in three linked tables.

The relational database uses the following three tables.

Instructor	Pupil	Booking	
instructorID	pupilRef	<u>bookingNo</u>	
name	name	instructorID*	
dayOff	address	pupilRef*	
hourlyRate	town	date	
		time	
		duration	

(a) The driving school would like a list of the names of all the instructors who have an hourly rate of more than £35 and the names of all their pupils.

Complete the SQL statement below to produce this list.

SELECT Instructor.name AS [Instructor], Pupil.name AS [Pupil]

[Turn over

(b) Sample data from the pupil table is shown below.

Pupil				
pupilRef	name	address	town	
PU1	P Clifford	21 Clark Street	Kilmarnock	
PU2	N Price	76 Burnside Ave	Greenock	
PU3	M Flood	41 Sinclair Street	Greenock	
PU4	A Singh	92 Rugby Road	Kilmarnock	
PU5	J Wilson	8 Stadium Way	Falkirk	
PU6	M Ali	56 Lime Road	Falkirk	
PU7	S McGuire	18 Craigneuk Ave	Airdrie	
PU8	D McGregor	120 Wallace Place	Greenock	
	•••		•••	

The driving school use the following SQL statement to display the number of pupils in each town.

SELECT town, COUNT(*) AS [Number Per Town] FROM Pupil GROUP BY town ORDER BY COUNT(*) DESC, town ASC

(i) Using the sample data provided, write the expected output from the SQL statement above.

town **Number Per Town**

(ii)	The SQL statement above makes use of the GROUP BY command.
	Explain why the GROUP BY command is required in the SQL statement
	above to produce the expected output.

1

2

3

14. (continued)

(c) The data from the instructor table is shown below.

Instructor				
instructorID	name	dayOff	hourlyRate	
001	C Robertson	Saturday	35	
002	L MacLean	Sunday	40	
003	T Jack	Wednesday	35	
004	B Avidal	Saturday	36	
005	F Shabnam	Tuesday	36	

The output below shows the average hourly rate of instructors who have their day off at the weekend.

Average Hourly Rate
37

Write the SQL statement that would produce the output above.

The the squatement that would produce the output above.

[Turn over

MARKS DO NOT WRITE IN THIS MARGIN

2

14. (continued)

(d) The driving school would like to know the pupilRef of all the pupils who have lessons with the instructor who offers lessons at the cheapest hourly rate.

FROM Booking, Instructor

WHERE Booking.instructorID = Instructor.instructorID

AND hourlyRate = MIN(hourlyRate);

When tested the SQL statement did not execute because an aggregate function cannot be included in a WHERE clause in this way.

Describe one solution to this problem.

[END OF SECTION 2]

