2024 Higher Chemistry Paper 2 - Q9

Section: Chemical Changes and Structure

Topic: Structure and Bonding (Titanium Extraction)

Question summary (Q9):

Titanium is extracted in the Kroll process.

- (a) (i) Calculate the mass of chlorine required when 1600 kg of TiO₂ reacts.
- (a) (ii) Suggest the type of bonding and structure in $TiCl_{\underline{a}}$.

Worked Solution:

- (a) (i) Reaction: $TiO_2 + 2CI_2 + C \rightarrow TiCI_4 + CO_2$
- GFM(TiO₂) = 79.9 g GFM(Cl₂) = 71.0 g
- Moles of $TiO_2 = 1600 \text{ kg} \div (79.9 \text{ g mol}^{-1})$ = $(1.600 \times 10^6 \text{ g}) \div 79.9 = 20,000 \text{ mol (approx)}.$
- Moles of $Cl_2 = 2 \times 20,000 = 40,000$ mol. Mass of $Cl_2 = 40,000 \times 71.0 = 2.84 \times 10^6$ g = 2840 kg.
- (a) (ii) ${\rm TiCl}_4$ exists as discrete molecules with covalent bonds.
- Bonding: covalent.
- Structure: simple molecular (molecular liquid at room temp).

Final Answer:

- (a) (i) 2840 kg Cl₂
- (a) (ii) Covalent bonding, simple molecular structure.

Revision Tips:

- Always convert kg → g before mole calculations.
- Balance equations carefully when scaling mole ratios.
- Ionic compounds = giant lattice; molecular covalent compounds = low-melting liquids/gases.
- \bullet $\mathrm{TiCl}_{\mathtt{\Delta}}$ is volatile because of weak London dispersion forces between molecules.