2024 Higher Chemistry Paper 2 - Q2

Section: Chemistry in Society

Topic: Chemical Analysis (Air Bags and Sodium Azide)

Question summary (Q2):

Airbags in cars use sodium azide (NaN_3) which decomposes into sodium and nitrogen gas.

- (a) (i) State the name for the minimum kinetic energy required for a reaction.
- (a) (ii) Calculate the energy released when 80 g of sodium azide decomposes ($\Delta H = -42.6 \text{ kJ mol}^{-1}$, GFM = 65.0 g).
- (a) (iii) State the charge on the azide group ion.

Worked Solution:

- (a) (i) The minimum kinetic energy required for a reaction = activation energy.
- (a) (ii) Moles of NaN₃ = mass \div GFM = 80 \div 65.0 = 1.23 mol.
- Energy released = $moles \times \Delta H = 1.23 \times (-42.6) = -52.4 \text{ kJ}.$
- Negative sign indicates energy is released (exothermic).
- (a) (iii) The azide ion is N_3^- , so the charge is -1.

Final Answer:

- (a) (i) Activation energy
- (a) (ii) -52.4 kJ
- (a) (iii) -1

Revision Tips:

- Activation energy = minimum energy needed for a successful collision.
- Always check units when calculating enthalpy change (convert grams → moles).
- Negative ΔH values indicate exothermic reactions.
- Common ions to memorise: hydroxide (OH⁻), carbonate

 (CO_3^{2-}) , nitrate (NO_3^{-}) , azide (N_3^{-}) .