2024 Higher Chemistry Paper 2 - Q2 Section: Chemistry in Society Topic: Chemical Analysis (Air Bags and Sodium Azide) ### Question summary (Q2): Airbags in cars use sodium azide (NaN_3) which decomposes into sodium and nitrogen gas. - (a) (i) State the name for the minimum kinetic energy required for a reaction. - (a) (ii) Calculate the energy released when 80 g of sodium azide decomposes ($\Delta H = -42.6 \text{ kJ mol}^{-1}$, GFM = 65.0 g). - (a) (iii) State the charge on the azide group ion. #### Worked Solution: - (a) (i) The minimum kinetic energy required for a reaction = activation energy. - (a) (ii) Moles of NaN₃ = mass \div GFM = 80 \div 65.0 = 1.23 mol. - Energy released = $moles \times \Delta H = 1.23 \times (-42.6) = -52.4 \text{ kJ}.$ - Negative sign indicates energy is released (exothermic). - (a) (iii) The azide ion is N_3^- , so the charge is -1. #### Final Answer: - (a) (i) Activation energy - (a) (ii) -52.4 kJ - (a) (iii) -1 ## **Revision Tips:** - Activation energy = minimum energy needed for a successful collision. - Always check units when calculating enthalpy change (convert grams → moles). - Negative ΔH values indicate exothermic reactions. - Common ions to memorise: hydroxide (OH⁻), carbonate (CO_3^{2-}) , nitrate (NO_3^{-}) , azide (N_3^{-}) .