2024 Higher Chemistry Paper 1 - Q3

Section: Chemical Changes and Structure

Topic: Structure & Bonding (Pure vs Polar Covalent)

Question summary (Q3):

Which of the following contains pure covalent bonds?

 $ACO_2BH_2SCPH_3DCF_4$

Worked Solution:

- Pure covalent ≈ non-polar covalent: the two atoms in the bond have (effectively) the same electronegativity, so electrons are shared equally.
- CO₂: C=O bonds are polar (O ≫ C in electronegativity) → not pure covalent.
- H₂S: S-H bonds are moderately polar (S > H) → not pure covalent.
- CF_4 : C-F bonds are strongly polar (F \gg C) \rightarrow not pure covalent.
- PH_3 : P and H have almost the same electronegativity \rightarrow P-H bonds are effectively non-polar (pure covalent).

Final Answer: $C - PH_3$

Revision Tips:

- "Pure covalent" \approx negligible electronegativity difference (e.g. H-H, Cl-Cl, or near-equal pairs like P-H).
- "Polar covalent" when there is a significant electronegativity difference (C-O, C-F, S-H).
- Molecular shape can cancel dipoles for overall polarity, but bond polarity depends on the two atoms joined.