2024 Higher Chemistry Paper 1 - Q19

Section: Chemistry in Society

Topic: Chemical Energy (Bond Enthalpies)

Question summary (Q19):

The mean bond enthalpy of the N-H bond is equal to one third of ΔH for which change?

Worked Solution:

- Mean bond enthalpy is defined as the enthalpy change when one mole of bonds is broken in the gaseous state.
- For an N-H bond, consider the reaction: $NH_3(g) \rightarrow N(g) + 3H(g)$.
- Here, 3 N-H bonds are broken. The total ΔH for this process is 3 \times (bond enthalpy of N-H).
- Therefore, the bond enthalpy of N-H = (1/3) \times Δ H of NH₃(g) \rightarrow N(g) + 3H(g).
- Reversing: $N(g) + 3H(g) \rightarrow NH_3(g)$ has $\Delta H = -(3 \times bond enthalpy)$.
- The question asks for ΔH where mean bond enthalpy = (1/3) ΔH . That corresponds to option A.

Final Answer: $A - N(g) + 3H(g) \rightarrow NH_3(g)$

Revision Tips:

- Bond enthalpy values always refer to bonds in the gaseous state.
- For polyatomic molecules, total bond enthalpy = number of bonds \times mean bond enthalpy.
- Watch carefully for whether ΔH refers to bond breaking (endothermic, +) or bond making (exothermic, -).