2024 Ch H1 Q3

Section: Chemistry in Society

Topic: Oxidising and Reducing Agents

Question Summary:

Calculate the number of moles of Fe2+ required to react with 100 cm3 of 0.5 mol l-1 KMnO4 solution, using the balanced ionic redox equation.

Worked Solution

Balanced ionic equation:

MnO4- + 5Fe2+ + 8H+ -> Mn2+ + 5Fe3+ + 4H2O.

Mole ratio Fe2+ : MnO4-= 5: 1.

Volume KMnO4 = 100 cm3 = 0.100 L.

Moles MnO4- = $0.5 \times 0.100 = 0.05$ mol.

Moles Fe2+ = $5 \times 0.05 = 0.25$ mol.

Final Answer:

0.25 mol Fe2+.

Revision Tips

- Always write the balanced ionic redox equation first.
- Convert cm3 to litres before using $n = c \times v$.
- MnO4- is a common oxidising agent; Fe2+ is a common reducing agent.