1

3

2

4. Alcohols and carboxylic acids are used in many laboratory experiments.

 $C_3H_7OH + O_2 \rightarrow$

- (a) Alcohols can take part in combustion reactions.
 - (i) Balance the equation for the enthalpy of combustion of propan-1-ol.

 CO_2 H_2O

(ii) An experiment was carried out to determine the enthalpy of combustion of propan-1-ol. The results are shown in the table.

Volume of water heated (cm³)	150
Initial temperature of water (°C)	21.2
Final temperature of water (°C)	35.1
Mass of propan-1-ol burned (g)	0.498
Mass of one mole of propan-1-ol (g)	60

Calculate the enthalpy of combustion of propan-1-ol, in kJ mol⁻¹, for this experiment.

(iii) Name the pieces of laboratory equipment that are essential for carrying out this experiment.

[Turn over

(a) (continued)

(iv) Suggest a reason why the enthalpy of combustion determined experimentally is lower than the value given in the data booklet.

1

- (b) Alcohols can undergo oxidation reactions.
 - (i) Oxidation reactions involve a change in the oxygen to hydrogen ratio. Determine the oxygen to hydrogen ratio for the alcohol ethane-1,2-diol.

1

- (ii) A primary alcohol, X, with the formula C_4H_9OH can undergo oxidation to compound Y.
 - (A) Suggest a suitable oxidising agent for this reaction.

1

- (B) Compound Y can be oxidised to give product Z, which turns universal indicator red.
 - Draw a structural formula for product **Z**.

1

(C) Alcohol X, C_4H_9OH , has an isomer that is a secondary alcohol. Name the product that would be formed by oxidation of this isomer.

1

4. (continued)

MARKS | DO NOT WRITE IN

WRITE IN THIS MARGIN

- (c) The concentration of a solution of ethanoic acid can be determined using sodium hydroxide solution.
 - (i) A solution of ethanoic acid was prepared using a piece of glassware that allows the volume to be made up to exactly 250 cm³.

Name this piece of glassware.

1

- (ii) A titration was carried out to calculate the accurate concentration of the ethanoic acid solution.
 - (A) A burette was rinsed with deionised water and then filled with sodium hydroxide solution.

Suggest an improvement that could be made to this step in the titration procedure.

1

(B) Four 25.0 cm³ samples of the ethanoic acid solution were titrated with 0.105 mol l⁻¹ sodium hydroxide solution.

The results are shown in the table.

	Titration			
	1	2	3	4
Initial reading (cm³)	0.2	21.0	0.4	20.4
Final reading (cm³)	21.0	41.5	20.4	40.7
Volume used (cm³)	20.8	20.5	20.0	20.3

Use these results to calculate the average volume used in cm³.

1

4.	(c)	(ii)	(continued)

(C) In another experiment, 25.0 cm³ samples of ethanoic acid were titrated with 0.105 mol l⁻¹ sodium hydroxide solution. The average volume of sodium hydroxide solution used was 19.8 cm³.

One mole of sodium hydroxide reacts with one mole of ethanoic acid.

Calculate the concentration, in $mol l^{-1}$, of the ethanoic acid.

3

(iii) An impure sample of ethanoic acid, CH₃COOH, contained traces of potassium ethanoate.

(A) Write the ionic formula for potassium ethanoate.

1

(B) A solution of the impure sample was prepared.

The concentration of ethanoic acid (GFM = 60 g) was found to be $0.45 \text{ mol } l^{-1}$.

Calculate the mass, in g, of ethanoic acid in 200 cm³ of this solution.