
1

Total marks — 95 Attempt ALL questions

Questions 5 and 15 contain a choice

1. The diagram shows the stages that take place in a complete cycle of the polymerase chain reaction (PCR) being used to amplify human DNA.

(ii) Describe the role of DNA polymerase in stage 3.

MARKS	DO NOT	
MARKS	WRITE IN	
	THIS	
	1110000	

4		1)
1.	 (continue	\
	 COLLLIIUE	: u /

(c) (i)		Explain why the enzyme ligase is not required in PCR.		
	(ii)	Explain why DNA polymerase extracted from human cells would not be suitable for PCR.	1	

(d) The table shows the contents of a reaction tube used in PCR.

Content of reaction tube	Volume (μL)
Distilled water	15.8
Buffer	2.4
Nucleotides	1.7
Magnesium chloride	2.1
Primers	2.0
DNA polymerase	0.4
Template DNA	0.6

Calculate the percentage of the contents of the reaction tube that is $\ensuremath{\mathsf{DNA}}$ polymerase.

Space for calculation

		υ,
		%

(e) The original sample used contained 70 DNA molecules.

Calculate how many copies of DNA there would be after 8 cycles of PCR.

Space for calculation

page 03