2023 Bi H1 Q11

Section: Metabolism and Survival

Topic: Cellular Respiration

Question Summary

The question shows the conversion of an intermediate $X \to Y$ in respiration, involving the coenzyme NAD \to NADH. You are asked to identify the enzyme catalysing this reaction and the location within the cell where it occurs.

Worked Solution

- The conversion NAD → NADH indicates that hydrogen atoms (and electrons) are being removed from a substrate and transferred to NAD, forming NADH. This reaction is therefore oxidation of the substrate.
- 2. The enzyme that catalyses oxidation reactions by transferring hydrogen to NAD is a dehydrogenase.
- 3. In aerobic respiration:
- Dehydrogenase enzymes act at several stages in glycolysis (cytoplasm), link reaction, and citric acid cycle (matrix).
- However, NADH itself is oxidised again at the inner mitochondrial membrane by the electron transport chain, not in the cytoplasm.
- 4. The question focuses on where NAD is reduced to NADH, which occurs inside the mitochondrion. Option A correctly

identifies the enzyme as dehydrogenase and the site as the inner mitochondrial membrane, where NADH production is linked to the transport chain.

Final Answer

■ Option A — Enzyme: Dehydrogenase; Location: Inner mitochondrial membrane

Revision Tips

- NAD is a hydrogen carrier: NAD → NADH during oxidation of substrates.
- Dehydrogenase enzymes remove hydrogen atoms (oxidation).
- ATP synthase is unrelated here it synthesises ATP at the end of the electron transport chain.
- Summary of locations:
- Glycolysis cytoplasm
- Citric acid cycle mitochondrial matrix
- Electron transport chain inner mitochondrial membrane
- Remember: dehydrogenase → NADH → ATP production.