2023 Bi H1 Q22

Section: Sustainability and Interdependence

Topic: Crop Protection

Question Summary

The question lists three examples of recombinant DNA approaches used to increase crop yield and asks which would lead to a decrease in the use of chemicals.

Worked Solution

- 1) Insertion of the *Bt* toxin gene into cotton plants:
- Bt cotton produces an insecticidal protein that kills certain pests, so farmers can use fewer chemical insecticides. → Decreases chemical use.
- 2) Insertion of glyphosate resistance gene into maize plants:
- This allows the use of the herbicide glyphosate to control weeds without harming the crop. It generally enables herbicide use and does not reduce chemical inputs. → Does not decrease.
- 3) Insertion of a drought-resistance gene into wheat plants:
- Improves tolerance to water stress but is unrelated to pesticide/herbicide inputs. → Does not decrease chemical use.

Therefore, only statement 1 would reduce chemical use.

Final Answer

■ Option A — 1 only

Revision Tips

- *Bt* crops → fewer insecticides.
- Herbicide-resistance traits typically shift weed control towards specific herbicides (not a reduction in chemicals).
- Abiotic stress traits (e.g., drought tolerance) influence water use and yield stability, not chemical inputs.